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SUMMARY 

 

Sickle cell disease (SCD) is a painful and debilitating autosomal recessive blood 

disorder. A novel approach to treating SCD involves the simultaneous delivery of 

nucleases specifically targeting the mutant β-globin (HBB) gene and a donor template to 

induce homology directed repair (HDR)-mediated correction of the SCD mutation in 

hematopoietic stem cells (HSCs). Examples of site-specific nuclease platforms are zinc-

finger nucleases (ZFNs), Transcription activator-like effector nucleases (TALENs), and 

recently developed clustered regularly interspaced short palindromic repeats (CRISPR) 

and CRISPR-associated protein 9 (Cas9) systems. One major hurdle for advancing 

endonuclease-based therapeutic strategies is achieving their efficient expression levels 

in clinically relevant cell types using currently available delivery approaches. The 

objective of this thesis is to investigate microinjection, traditionally applied for in vitro 

fertilization of oocytes, for direct, controlled delivery of HBB-aiming nucleases and donor 

template into human cultured cells. We thoroughly characterized a microinjection 

system, investigated the effects of microinjection on cell functionality, and demonstrated 

proof-of-principle of gene editing in human hematopoietic K562 cells microinjected with 

TALENs and CRISPR/Cas9 and donor template. We found that injection negligibly 

affects the cell proliferation potential and provides high cell viability, and can be used to 

control the exposure of nucleases in injected cells. In addition, we performed a study to 

optimize the delivery of HBB-targeting CRISPR/Cas9 nucleases and nickases and 

quantify their effects on the hematopoietic potential and cell viability in human HSCs. 

This work provides insight into the clinical applicability of gene targeting reagents for 

correcting SCD in HSCs.  
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CHAPTER 1: REVIEW OF GENE CORRECTION APPROACHES 

FOR HEMOGLOBINAPTHIES 

 

1.1 Hemoglobinopathies and available therapies 

Hemoglobinopathies are a group of genetic blood disorders caused by aberrant 

hemoglobin expression or structure and are major health burdens with severe mortality 

worldwide1,2. Such disorders, include sickle cell disease (SCD) and β-thalassemia, 

occurring in 330,000 births annually worldwide according to recent estimates1,2. In the 

United States, SCD alone affects between 90,000 to 100,000 people3 and is associated 

with an economic burden exceeding $1.1 billion annually in medical care costs4. The 

molecular basis for SCD is an A to T transversion resulting in the substitution of a non-

polar valine for polar glutamic acid in the sixth amino acid position of the β-globin (HBB) 

gene5, resulting in the formation of hemoglobin S (HbS). This mutation is associated with 

protection from Plasmodium falciparum malaria in people with the sickle cell trait, 

characterized by heterozygosity for HbS and wild type adult hemoglobin (HbA) typically 

without SCD symptoms6,7. In patients homozygous for HbS, aberrant polymerization of 

hemoglobin occurs in deoxygenated red blood cells (RBCs), causing them to deform into 

a sickle-shape and become rigid and adhesive. Repetitive cycles of sickling as HbS 

molecules switch from oxygenated to deoxygenated states causes RBC fragility and 

promotes vasocclusions, painful crises, chronic anemia, acute chest syndrome, organ 

failure, stroke, and death6,7. Symptoms indistinguishable from the homozygous HbS 

version of SCD occur in compound heterozygous patients that co-inherent the sickle cell 

mutation with other types of hemoglobinopathies, such as β-thalassemia. The severity of 

the hemoglobinopathy has dependence on levels of persistent fetal hemoglobin F (HbF) 
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and the underlying mutation8. In β-thalassemia, point mutations or small deletions in 

HBB cause a reduction or complete elimination of HBB chains and HbA. Similar to SCD, 

homozygosity results in a disease phenotype that ranges in severity, from mild forms of 

anemia, associated with thalassemia intermedia to severe anemia, associated with 

thalassemia major6,9. In addition to anemia, patients homozygous for β-thalassemia have 

hyperstimulated erythropoiesis and bone marrow cavity expansion  by the erythroid 

tissues, resulting in cosmetic deformities6. 

The available therapies for SCD and β-thalassemia ameliorate the disease 

symptoms, but are each associated with undesirable side effects and limitations. 

Erythrocyte transfusion therapy is typically used to treat severe anemia in affected 

patients, more commonly in treating β-thalassemia major, but is limited by risks of 

potentially deadly iron overload complications and is often addressed by administering 

iron chelators6. Alternatively, hydroxyurea therapy is administered for inducing the 

expression of HbF, alleviating clinical features, including episodes of painful crises10,11. 

Although the only FDA approved drug for SCD, hydroxyurea is not effective in treating all 

patients and is further limited by its myelosuppressive activity in the marrow with unclear 

risks from long-term treatment11,12.  Allogeneic hematopoietic stem cell transplantation 

(HSCT) is the only curative modality for both disorders13-15. HSCT involves the 

replacement of bone marrow, the source of defective RBCs, in affected patients with 

marrow from a healthy donor (Figure 1). Transplant procedures are typically performed 

in symptomatic patients less than 16 years of age that have an HLA-identical family 

member donor14-16. Excluded from transplant eligibility are patients with extensive end-

organ dysfunction, including severe renal and neurologic impairments or stage II/IV 

sickle cell lung disease14,16. In a multicenter investigation performed in the US and 

Europe, HSCT resulted in event-free survival in 84% of SCD patients with resolution of 

vasocclusive crises and anemia as well as improvement in organ function in stably 
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engrafted patients16. One interesting observation reported in HSCT clinical trials is that 

stable mixed donor-host chimerism was sufficient in reversing the disease phenotype for 

SCD14,16 and β-thalassemia17. Despite the curative effects, HSCT is associated with 

therapeutic challenges. Only 14% of SCD patients have histocompatible donors for 

transplantation18. The therapy requires myeloablative conditioning regiments to reduce 

the risks of graft rejection, which is not well tolerated in many patients, particularly those 

with severe irreversible complications19. As a consequence of higher mortality risks 

resulting from myeloablative conditioning, transplantation is not an option for adults19. 

Furthermore, HSCT is further limited by graft-verse-host disease, disease re-occurrence, 

and mortality risks16 that must be weighed  against the severity of the disease 

symptoms, making decisions regarding HSCT difficult for care-providers and the 

patients’ families.  

Gene therapy and emerging precision gene-editing technologies have opened 

new therapeutic possibilities for SCD and β-thalassemia. This review will describe the 

application of gene therapy and gene-editing tools for curing SCD and β-thalassemia in 

animal models and clinical trials (in the case of gene therapy). The clinical challenges 

and emerging technical opportunities for advancing a novel therapy using each 

approach will be addressed. 
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Figure 1: Schematic of allogeneic HSCT 

The patient is first treated with chemotherapeutic drugs to ablate the bone marrow. Bone marrow from a 

healthy donor is harvested and enriched for CD34
+
 cells using immunolabeling and cell separation 

techniques. The donor HSCs are infused into the patient to repopulate the entire blood system, thereby 

replacing the defective RBCs with healthy RBCs. The image is taken from
20

. 

 

1.2 Gene therapy for hemoglobinopathies 

The goal of gene therapy is transferring the normal HBB into hematopoietic stem 

cells (HSCs) harvested from the patient for subsequent transplantation as a long-term 

autologous therapy (Figure 2). HSCs can be enriched and isolated from the patient’s 

bone marrow aspirates or peripheral blood by immunolabeling and separating the CD34+ 

cells. The enriched HSCs can then be transduced using viral vectors containing the 

correct HBB and transfused back into the patient21. Alternatively, the patient’s whole 

bone marrow can be transduced and transplanted. Because autologous HSCs have very 
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low potential to activate graft-verse-host-disease in the patient, immunosuppression may 

not be necessary post-transplantation.  

Establishing proof-of-principle application of the gene therapy approach for 

correcting hemoglobinopathies has been made possible by the availability of transgenic 

mouse models for SCD22,23 and β-thalassemia24,25. Additional advances leading to 

seminal studies have been the genomic mapping of the human HBB cluster locus control 

region (β-LCR)26-29 and the identification of regulatory elements within the HBB cluster 

required for high levels of erythroid-specific, and vector position independent HBB 

expression30-32. Extensive studies demonstrating correction of HBB in murine models 

applied human immunodeficiency virus (HIV)-1-derived lentiviral vectors containing the 

HBB locus and regulatory elements. Lentiviral vectors efficiently infect non-dividing 

HSCs, provide long-term expression that depends on the number of copies integrated 

per cell, and have relatively high RNA processing efficiency33. In a pioneering study by 

May et al., mouse bone marrow transduced with HBB lentiviral vectors and transplanted 

into lethally irradiated recipient β-thalassemia mice resulted in 13% of total hemoglobin 

incorporating the wild type HBB chain at 24-weeks after transplantation34. Although there 

was incomplete transduction into the hematopoietic compartment, as indicated by a 

proviral copy number of 0.75 per transduced cell,  recipient mice transplanted with 

transduced marrow showed correction in phenotypic features of thalassemia as 

assessed by improvements in hematocrit level, RBC count, reticulocyte count, and 

hemoglobin levels relative to control mice34. Furthermore, a study by Imren et al. showed 

that enhanced viral titer preparations for transduction resulted in 3 proviral copies per 

transduced cell leading to human wild type HBB expression in 95% of RBCs35. Complete 

transduction of bone marrow transplanted into severe β-thalassemia mice coincided with 

32% of all HBB chains consisting of the wild type HBB, which was sufficient to correct 

indices of anemia and ineffective erythropoiesis35. Additional studies verified that 



www.manaraa.com

6 

complete reconstitution of the hematopoietic compartment with donor marrow similarly 

transduced with human HBB or ɣ-globin (HBG1) lentiviral vectors provides permanent 

human hemoglobin expression and ameliorates the thalassemia phenotype in murine 

models36-38.  

Transplantation of bone marrow transduced with anti-sickling hemoglobin variants 

and β-LCR resulted in correction of the disease pathology in SCD mouse models. In the 

study by Pawliuk et al., the βA-T87Q -globin variant, a potent inhibitor of HbS 

polymerization, having a threonine to glutamine mutation at codon 87, was inserted into 

a lentiviral vector structurally optimized for erythroid-specific expression and stable gene 

transfer into HSCs, yielding high viral titers and multiple chromosomal integration events. 

Transplantation of βA-T87Q lentivirus-transduced bone marrow from SCD mice into lethally 

irradiated mouse recipients resulted in up to 52% of total hemoglobin consisting of the 

βA-T87Q variant. High levels of βA-T87Q hemoglobin containing erythrocytes coincided with 

corrected RBC and reticulocyte counts and amelioration of SCD-associated 

splenomegaly and urine concentration defect39. Comparable correction of a SCD mouse 

model was demonstrated by Levasseur et al. Minimal amounts of lentiviral vector was 

used to transduce purified murine HSCs with anti-sickling human βAS2-globin, having 

substitution of alanine and glutamine at positions 22 and 87 respectively in HBB40. 

Primary and secondary transplant mouse recipients showed correction of SCD 

associated characteristics, including a significant increase in RBC counts, hematocrit 

values, hemoglobin levels, and restored urine concentration capacity40.  
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Figure 2: Schematic of gene therapy for hemoglobinopathies 

CD34+ cells are collected from the patient with β-thalassemia or SCD and treated with lentiviral vector 

particles containing the normal HBB and LCR elements. The patient is given chemotherapy to ablate the 

bone marrow and make room for the engraftment by gene modified HSCs. Following viral transduction, the 

gene modified HSCs are infused back into the patient.  

 

1.3 Challenges with gene therapy 

Although gene therapy studies in murine SCD and β-thalassemia models were 

promising, there are several safety risks that have impeded its clinical application. A 

major concern is the possibility for insertional mutagenesis by gene transfer vectors. The 

X-linked severe combined immunodeficiency (SCID) gene therapy human trial in France 

was halted after two patients developed lymphoblastic leukemia within 30 months after 

therapy as a result of proviral integration within the LMO-2 locus leading to aberrant 

LMO-2 expression in T cells41-43. The absence of competent retrovirus suggests that an 
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insertional mutagenesis event in a transduced CD34+ cell was the basis for 

malignancy41. Furthermore, a study by Imren et al., showed that human cord blood-

derived CD34+ cells stably transduced with clinically relevant levels of anti-sickling βA-

T87Q-globin gene using a lentiviral vector, yielded sustained production of βA-T87Q-globin in 

transplanted erythroid progenitor cells in vitro. However, a thorough analysis of the 

proviral integration events revealed that multiple different clones had proviral 

integrations, although preferring introns, occurring in a number of genes involved in 

signaling transduction pathways or tumor suppressor genes associated with leukemia44. 

Furthermore, changing patterns of viral integration was observed in a single transplanted 

mouse recipient over a two month period, highlighting the possibility of tumor-suppressor 

gene inhibition or activation of an oncogene following proviral gene disruption, potentially 

resulting in malignancy44.  

There are concerns about the enrichment of sufficient numbers of HSCs for viral 

transduction. Because the corrected HSCs must compete with non-corrected cells for 

occupancy in the bone marrow and lack selective advantage, higher doses of treated 

HSCs is desirable, increasing the chances for success in an autologous transplant in 

non- or partial myeloablative settings. Furthermore, the requirement for emergency 

HSCs in the event that the autologous transplant fails to engraft provides even more 

justification for high-yield collections of HSCs. A non-invasively acquired source of 

human HSCs for gene therapy is granulocyte-colony stimulating factor (G-CSF)-

mobilized peripheral blood. G-CSF has been shown to egress high numbers of CD34+ 

cells into circulation, however, it is unsafe for SCD patients due to severe adverse side 

effects, including acute crises and death45,46. β-thalassemia patients having 

splenomegaly as a result of their disease symptoms are at risk for splenic rupture47 as 

well as hyperleukocytosis48 when receiving G-CSF. Therefore, great caution should be 

used when administrating G-CSF in SCD and β-thalassemia patients. These risks are 
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further complicated by the fact that G-CSF at safer reduced doses has been associated 

with poor mobilization of CD34+ cells in β-thalassemia patients48. A small clinical trial has 

shown that combining treatment with G-CSF with plerixafor improves HSC mobilization 

by several-fold in thalassemia patients with splenomegaly without inducing 

hyperleukocytosis48. However, larger studies are necessary to confirm the safety of the 

G-CSF and plerixafor combination. 

 

1.4 β-globin gene therapy clinical trials 

The successful demonstration of gene therapy in mouse models of SCD and β-

thalassemia prompted the initiation of human clinical trials in France. The lentiviral vector 

used in the first trials, HPV569 LentiGlobin, encodes for the therapeutic βA-T87Q gene and 

was designed with safety features to lower the risks of mutagenic integration observed in 

the SCID gene therapy trial41-43. Modifications in the lentiviral vector were made to render 

it a self-inactivating vector, such that the only promoter-enhancer activity was in the β-

LCR elements for erythroid-specific expression. Furthermore, insulators containing core 

elements of the chicken chromatin HS4 was added to prevent activation of neighboring 

genes. The HPV569 LentiGlobin vector was deemed safe, not showing evidence of 

activating malignancy in long-term survival studies in mice. The patients selected for the 

clinical study had severe forms of transfusion-dependent β-thalassemia and SCD and 

did not have available HLA-matched donors for HSCT. The trial procedure involves 

isolating CD34+ cells from the patient bone marrow, a portion of which is cryopreserved 

in the event of graft rejection and the remainder transduced with LentiGlobin. Following 

ex vivo transduction, the treated HSCs are intravenously infused into the myeloablated 

patient. A sample of transduced HSCs is subjected to replication-competent lentivirus 

testing to verify safety and quantification of βA-T87Q gene expression. The clinical protocol 
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was designed with an endpoint analysis of transplant success at 2 years post-transplant 

and requires recipients to be monitored over 15 years for adverse event analysis, 

replication-competent lentivirus testing, and insertional mutagenesis testing49.  

The first patient having engraftment of autologous CD34+ cells transduced with 

HPV569 LentiGlobin was recently reported to be in his 5th year of transfusion 

independence and without any adverse events since gene therapy50. The patient had 

severe β- thalassemia and previously required transfusions once per month and did not 

respond to hydroxyurea therapy. The ex vivo transduction efficiency measured at 1 week 

in culture following transduction was 0.6 vector copies integrated per cell51. 

Transplantation of transduced cells (3.9 X 106 CD34+ cells per kg) into the patient, pre-

conditioned by Busulfex treatment, resulted in complete hematopoietic reconstitution. 

The levels of nucleated blood cells containing the βA-T87Q-globin vector stabilized at 11% 

while 36.2% of HBB chains consisted of βA-T87Q by 30 months after transplantation51. The 

peripheral blood cells containing the βA-T87Q vector gradually increased and stabilized at 

3.5 g/dL by 2 years after transplantation50. The patient had corrected mean corpuscular 

hemoglobin content at 28.4 pg and a normal range of hemoglobin between 8.5-10 g/dL, 

one third of the hemoglobin comprised of the therapeutic hemoglobin βA-T87Q, which 

eliminated the need for blood transfusion50,51. Although expression from the integrated 

βA-T87Q vector was erythroid specific, DNA pyrosequencing analysis revealed multilineage 

chromosomal integration of the HPV569 LentiGlobin vector into multiple sites, with the 

most abundant integration sites found in the RFX3, ZZEF1, and HMGA2 loci. 

Interestingly, over time there was a growing dominance of cells with integration within 

the HMGA2 locus, specifically found in granulocytes-monocytes and erythroblasts, but 

not lymphocytes. This increase in myeloid cells positive for disruption in the HMGA2 

suggests the clonal expansion of a transduced HSC having a myeloid bias. The HMGA2 

integration site resulted in a 10,000-fold increase in HMGA2 expression compared to 
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pre-transplant levels due to combined enhancement from the β-LCR and vector-induced 

truncation causing the HMGA2 mRNA to become insensitive to microRNA let-7 

regulation51. The vector-induced enhancement of HMGA2 mRNA is evidence that the 

core insulators in the vector likely failed to protect against activation of neighboring 

genes, thus reinforcing concerns about viral vector safety for therapeutic gene transfer 

applications.  

Viral vector disruption in the HMGA2 site was implicated in conferring clonal 

growth advantage in other gene transfer studies52,53. Although the effects of HMGA2 

activation on malignancy are unknown in the patient described in51, one can speculate 

that there is a lingering risk for transformation. In a study by Ikeda et al., transgenic mice 

with a similar truncation in the 3’ untranslated region of HMGA2 resulted in microRNA 

let-7 insensitivity, HMGA2 overexpression, increased peripheral blood cells from all 

blood lineages, splenomegaly, and EPO-independent erythroid colony formation in bone 

marrow cells54. Competitive and serial bone marrow transplant assays in mice revealed 

that HMGA2 overexpression conferred clonal growth advantage and self-renewal 

capacity in HSCs reminiscent of the observations made in the study by Cavazzana-

Calvo et al. The results of the Ikeda study also showed upregulation in Jak2 mRNA, 

pSTAT3, and pAKT proteins with a contaminant decrease in pSTAT5 expression; 

implicating the involvement of JAK-STAT5 and P13K-AKT signaling pathways in the 

proliferation of myeloid cells and hematopoiesis. The transgenic mice did not develop 

lymphoma, but showed splenomegaly and growth advantage in B- and T-cells as a 

result of enhanced HMGA2 expression54.  

Because of the HMGA2 activation observed in the β-thalassemia clinical trial, the 

HPV569 LentiGlobin lentivirus vector was improved for safety, and transduction and 

manufacturing efficiency. The insulator domains found to be unstable in the HPV569 

LentiGlobin were removed in the second generation BB305 LentiGlobin vector to 
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enhance safety. In addition, the promoter/enhancer was changed from the 5’ HIV U3 

LTR to CMV, resulting in further enhancement in the viral titers and yields. In vitro 

comparison of the two vector designs revealed that the BB305 LentiGlobin provided 3-4 

fold higher viral titers and a 2-3 fold higher vector copy number in transduced CD34+ 

cells relative to the HPV569 vector55. In a murine bone marrow transplant study, 

peripheral blood from mice engrafted with transduced BB305 LentiGlobin had a 1.1-1.5 

fold higher vector copy number relative to the HPV569 vector. Both HPV596 and BB305 

LentiGlobin vectors displayed preferred integration into gene coding regions with 51.9% 

of integrations found in common insertion site regions, which have not previously been 

associated with adverse events in patients. Preferred insertional integration was not 

observed in high risk genes LMO2 or MDS1-EVI1, associated with transformation, for 

either HPV596 or BB305 LentiGlobin vectors in primary and secondary transplanted 

mouse recipients55, thus providing evidence of vector safety. Clinical trials for treating β-

thalassemia and SCD patients using the BB305 LentiGlobin lentiviral vector is currently 

in progress in France and the United States (ClinicalTrials.gov, identifier NCT02151526). 

 

1.5 Homologous recombination mediated gene correction 

Gene replacement of the HBB gene containing mutations causing SCD or β-

thalassemia with a normal copy of HBB via homologous recombination is an alternative 

approach that may diminish the risks associated with gene therapy. Proof-of-principle for 

was established in the study by Wu et al.56. The study derived embryonic stem cells 

(ESCs) from blastocysts from a SCD mouse model, and subsequently transfected them 

with a targeting vector containing the human γ-βA-globin gene fragment flanked by 5’ 

and 3’ homologous mouse sequences, which resulted in successful homologous 

recombination-induced HBB gene replacement in 14.2% of isolated colonies. Mice 
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derived from the corrected sickle ESCs had high levels of HbA expression in 

differentiated RBCs. Furthermore, anemia and organ pathology was ameliorated in the 

mice derived from the corrected ESCs, suggesting that HDR induced gene replacement 

was sufficient to correct the SCD genotype and symptoms56. A similar study 

demonstrated that HDR induced gene corrected ESCs derived from sickle cell mice can 

be differentiated into hematopoietic cells57. However, the majority of the hematopoietic 

cell clones derived from the targeted ESCs expressed both HbS and HbA57. Clinical 

application of this approach for treating SCD or β-thalassemia would involve a multiple 

step process, including generating patient derived ESCs by somatic cell nuclear transfer, 

correction of the mutated HBB gene, and differentiation of ESCs into HSCs57. ESCs are 

highly desirable to use as substrates for this therapeutic approach because they have 

the potential to differentiate into all types of cells. However, the major weaknesses of this 

therapeutic approach is the ethical and religious implications associated with the clinical 

use of human ESCs derived from donor oocytes, and potential immune rejection risks 

resulting from immunological incompatibility of derived HSCs58.  

To overcome some of the complexities associated with deriving patient 

customized ESCs, correction in induced pluripotent stem cells (iPSCs) was proposed as 

an alternative strategy. iPSCs are derived by direct reprogramming of mouse or human 

somatic cells using retroviral transduction of several transcription factors and have 

genetic and epigenetic similarities with ESCs59-61. In the study by Hanna et al, mouse 

iPSCs were derived by transducing fibroblasts isolated from an adult humanized mouse 

model of sickle disease with Oct4, Sox2, Klf4, and c-Myc transcription factors62. The 

resulting ESC-like cells expressing pluripotent markers were used to generate cell lines 

corrected through homologous recombination using targeting constructs containing the 

normal human HBB gene, differentiated into hematopoietic progenitors in vitro, and 

subsequently transplanted into irradiated SCD recipient mice62. The recipient mice 



www.manaraa.com

14 

injected with the corrected iPSC derived hematopoietic progenitor cells had stable 

engraftment and corrected genotype, expressed HbA proteins, and had ameliorated 

pathological features of SCD62. Human iPSCs have been derived from various cell 

sources, such as skin fibroblasts, amniotic fluid cells, and chronic villus samples 

harvested from a homozygous β-thalassemia patient, and were shown to differentiate 

into hematopoietic progenitor cells; raising the possibility for utilizing patient derived 

iPSCs to treat patients with β-thalassemia or SCD at early neonatal stages63. The study 

by Wang et al. demonstrated proof-of principle for correcting the β-thalassemia mutation 

in iPSC derived from fibroblasts harvested from a homozygous β-thalassemia patient64. 

The patient-derived iPSCs were corrected by transfecting a homologous targeting vector 

encoding for the normal HBB gene and drug resistance marker, retained expression of 

pluripotent marker genes, and were capable of differentiation into hematopoietic 

progenitor cells64. 

Although pluripotent stem cells hold promise as tools for treating 

hemoglobinopathies and other genetic diseases, the main challenge for their clinical 

application is safety. ESCs and iPSCs have uncontrolled proliferation and tissue 

differentiation potential and are capable of forming teratomas at the implantation site65. 

Stringent cell separation methods are necessary to produce pure populations of 

differentiated cell progeny and reduce the risks of teratoma formation65. Furthermore, the 

protocols for differentiating iPSCs or ESCs have low and variable efficiencies, and many 

require the use of animal feeder layers that can potentially introduce animal pathogens65. 

An inherent limitation of the gene targeting strategy using transgenes encoding for the 

correct HBB gene is the low frequency of homologous recombination events in 

mammalian cells, occurring in roughly 10-3 to 10-7 transfected cells66. In the study 

demonstrating homologous recombination-mediated gene correction of the β-
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thalassemia mutation in patient-derived iPSCs, the targeting efficiency measured was 

0.81% with drug selection64, thus, underscoring the low efficiency for this approach.  

1.6 Precision gene-editing tools 

Mammalian cells have complex machinery to repair double stranded breaks (DSBs) 

in DNA and maintain genomic integrity. A DSB can be repaired by two main pathways: 

non-homologous end-joining (NHEJ) and homology directed repair (HDR)67. Repair by 

the NHEJ pathway results in small deletions and/or insertions at the break site, 

generated to obtain alignment of complementary bases67. The HDR pathway involves 

high fidelity repair of the broken ends using homologous sequences found in sister 

chromatids, homologous chromosomes or exogenous DNA containing homologous 

sequences67. In these studies, the homing I-SceI endonuclease (also called 

meganucleases) from Saccharomyces cerevisiae, which generates DSBs at a targeted 

recognition sequence of 18-bp68, was co-transfected along with a homologous donor 

plasmid DNA into human COS-169 and mouse ESCs70 to induce HDR mediated knock-in 

of the donor sequence into the I-SceI target site. Additional studies confirmed that the 

induction of a DSB by meganucleases can dramatically increase the frequency of HDR 

by 3-5 orders of magnitude when a homologous exogenous donor plasmid DNA is 

provided71. Although meganucleases can catalyze DSBs critical for genetic alterations, 

modifying the recognition specificity of meganucleases such as I-SceI limits their use as 

a gene-editing tool for stimulating site-specific alterations72. This challenge inspired the 

design of customizable designer nucleases capable of targeting pre-existing genomic 

sequences that can mediate different types of gene modifications through activation of 

NHEJ and HDR (Figure 3). In the following paragraphs, we will explore different 

precision gene-editing tools. 
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One class of versatile targeting nucleases is zinc finger nucleases (ZFNs) (Figure 

4a). The ZFN structure consists of a zinc finger protein (ZFP) DNA-binding domain 

composed of zinc finger motifs73 fused to the nuclease domain of the FokI restriction 

enzyme, conferring the hybrid protein with DNA binding capability and robust cleavage 

activity74. The ZFPs contain a tandem array of Cys2-His2 units, each roughly 30 amino 

acids in length, bound to a zinc atom, and recognizing 3 base pairs of DNA75. DNA 

cleavage activity requires dimerization of the FokI domains in a pair of ZFNs, each 

targeting neighboring recognition sequences, arranged in an inverted orientation on the 

genome, and separated by a spacer region76. The dimerization requirement can be 

exploited to prevent cleavage events at single binding sites, increasing the overall 

specificity77. When delivered into cells, ZFNs catalyze DSBs repaired by NHEJ or HDR 

pathways, resulting in several different genetic alteration outcomes, such as insertions, 

deletions, inversions, duplications, and translocations78. In an early study, delivery of a 

ZFN pair, each composed of three ZFPs specifying 9-bp, along with homologous donor 

template DNA was used to stimulate gene targeting in the X-chromosome of the 

Drosophila melanogaster germ line79. Since then, additional studies demonstrated ZFN 

mediated gene modification in many different organisms80-82 and human cell lines83,84. 

The versatility of potential genomic modifications makes ZFNs an attractive tool for 

therapeutic purposes. ZFNs were designed to disrupt the HIV host co-receptor CCR5 

gene 85 as an HIV therapy currently in Phase 2 clinical trials86. However, the major 

weakness of the ZFN nuclease platform is its limited targeting range using publically 

available methods, making it difficult to design a ZFN at a desired target site87. 

Transcription activator-like effector nucleases (TALENs) are a second class of hybrid 

tailorable nuclease for gene-editing (Figure 4b). TALENs consist of the DNA binding 

domain from TALE proteins isolated from bacteria of the Xanthomonas genus, fused to 

the DNA cleavage domain from the FokI restriction enzyme, conferring TALENs with 
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DNA binding capability and high cleavage activity88. A DSB is formed at the target locus 

by a TALEN pair, each binding adjacent elements on separate strands of the DNA in a 

tail-to-tail orientation, separated by optimized DNA spacing required for FokI dimer 

formation88. The TALE DNA binding domain is modular, consisting of 15.5-19.5 repeats 

roughly 34 residues in length that each recognizes a specific nucleotide determined by 

the repeat-variable di-residues (RVDs) at positions 12 and 13 within the module88. The 

Golden Gate cloning strategy is used to assemble libraries of unique arrangements of 

RVD repeats from which it is possible to screen using a cognate target genomic 

sequence89. An attractive feature that makes TALENs more desirable as a tool for 

genome editing compared to ZFNs is the availability of the RVD-DNA recognition code 

that identifies the range of specificities of RVD sequences, including RVDs that specify 

unique nucleotides, enabling design of customized binding domains90,91. Although 

TALENs have been shown to have comparable cleavage activity to ZFNs in studies 

targeting the same genes, its simpler design and broader targeting range makes 

TALENs more attractive than ZFNs78. TALENs have been applied for targeted genomic 

editing in various animal species92,93 and human pluripotent cells 94.  

The third class of gene editing tools are the recently developed clustered regularly 

interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 

(Cas9) system (Figure 4c)95. CRISPR systems play a role in the adaptive immune 

systems for bacteria, providing protection from invading nucleic acids96. The Cas9 

endonuclease is directed to a target DNA site by a single guide RNA (sgRNA) through 

Watson-Crick base-pairing rules97. In the type II CRISPR system of Streptococcus 

pyogenes, Cas9 endonuclease cleaves at the complementary 20 nucleotide target site 

specified by the sgRNA immediately 5’ of the NGG proto-spacer adjacent motif (PAM) 

sequence97. The commonly used CRISPR/Cas9 system for gene-editing involves the co-

delivery of the Cas9 endonuclease and sgRNA often encoded on a single plasmid DNA. 
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Redirecting the CRISPR/Cas9 nuclease to desired targets in the genome requires 

modification of the targeting sgRNA sequence while the other components remain fixed, 

making the process of developing CRISPR/Cas9 nucleases simpler compared to ZFN 

and TALEN platforms. Furthermore, the Cas9 endonuclease can be co-delivered with 

two or more sgRNAs targeting multiple sites simultaneously, enabling  multiplex 

disruption within the genome98. The main disadvantage of the CRISPR/Cas9 nuclease 

platform is its high frequency of cleavage activity at off-target sites in the genome, 

resulting in gross chromosomal deletions and other types of chromosomal 

rearrangements99-101. Tolerated mismatches and bulges between the sgRNA and gene 

sequences were implicated for non-specific cleavage by the CRISPR-Cas9 system102, 

providing evidence for the need to carefully screen potential off-target sites during the 

design stage. The CRISPR/Cas9 system has been applied for efficient generation of a 

wide range of transgenic animal models103-107 and engineered plants108-110. We will 

explore therapeutic applications for precision gene-editing tools in the next section. 
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Figure 3: Gene modification outcomes following the induction of a DSB by nucleases 

The DSB is resolved by endogenous repair machinery involved in the NHEJ and HDR pathways. Activation 

of the NHEJ repair pathway leads to insertions and/or deletions of sequences at the DSB site to enable 

resecting of both strands for repair, resulting in gene disruption. The simultaneous delivery of nucleases and 

donor repair template DNA activates repair using the HDR pathway, whereby the information encoded on 

the donor template is transferred to the target site for gene insertion or gene correction. 
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Figure 4: Schematic of precision gene-editing tools 

(a) ZFNs consist of a DNA binding ZFP fused to a FokI restriction enzyme. Each ZFP recognizes 3 

nucleotides and are linked together to mediate binding to a desired target site. A ZNF pair binds to the DNA 

in a head to tail orientation. (b) TALENs consist of TALE repeat domains, each recognizing a single 

nucleotide, fused to FokI. The effector domains from a TALEN pair bind to adjacent effector elements in a 

tail to tail orientation with optimized spacing. The generation of a DSB within the spacing between TALE and 
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ZFN pairs requires the dimization of the FokI domains. (c) In the CRISPR/Cas9 systems, a Cas9 

endonuclease is guided by a chimeric sgRNA containing the complementary sequence (purple) to the target 

site immediately 5’ of the PAM sequence (red).  

 

1.7 Gene correction using precision gene editing tools 

Therapeutic gene correction for hemoglobinopathies involves the replacement of 

mutant sequences within the HBB locus with a wild type donor sequence through 

activation of the HDR repair pathway (Figure 5)56,57. As discussed earlier, the frequency 

of HDR can be dramatically increased by inducing a DSB using site-specific 

nucleases111,112. Early work by Urnov et al. demonstrated gene correction of a disease 

mutation in human cell lines and primary cells treated with ZFNs and donor vector 84. 

The study observed up to 20% gene targeting in K562 cells, a human leukemia cell line, 

treated with IL2RG ZFNs and donor vector without selection84. Comparable levels of 

HDR was observed in human CD4+ T cells treated with ZFNs84. Interestingly, ZFN 

induced HDR of the target site occurred at the highest frequency in G2 arrested cells, 

suggesting that gene targeting is favored in the S/G2 stage of the cell cycle84. The work 

by Lombardo et al. confirmed that gene targeting in a disease related gene downstream 

of its own promoter is feasible using ZFNs and donor vector co-delivered into a variety of 

human cell types, including ESCs and HSCs113. Studies have shown that TALENs114,115 

and the recent CRISPR/Cas9 nucleases116 provide efficient gene targeting of the SCD 

mutation in the HBB locus in K562 cells. 

Early studies demonstrating efficient gene targeting by ZFNs117 and TALENs94 

combined with donor template in human ESCs and iPSCs provided the motivation for 

developing therapeutic strategies in patient-specific pluripotent stem cells. Pioneering 

work by Yusa et al. demonstrated gene correction of the point mutation in A1AT causing 
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α1-antitrypsin deficiency in iPSCs, resulting in the rescued A1AT function in derived liver 

cells118. A1AT ZFNs and donor vector, designed with a drug selection marker flanked by 

piggyBAC repeats, were transfected into human iPSCs derived from patients with α1-

antitrypsin deficiency118. The drug-resistant iPSC clones obtained showed a targeting 

efficiency of 54% and 4% in one allele and two alleles respectively118. The piggBAC 

repeats mediated seamless removal of the drug cassette, providing biallelic excision in 

11% of colonies that also showed corrected A1AT sequences in both alleles118. ZFN 

induced gene correction did not alter the pluripotency of corrected cells, whereby 

differentiation into hepatocyte-like cells in vitro resulted in the functional correction of the 

disease phenotype118. Similarly, phenotypic correction was observed in mice 

transplanted with corrected iPSC-derived hepatocytes118. A similar approach was used 

for correcting the SCD mutation in work by Sebastiano et al.87. Human iPSCs derived 

from individuals with SCD were transfected with HBB ZFNs and donor vector, containing 

the correct HBB and a drug selection cassette flanked by loxP sites87. HDR mediated 

gene targeting was achieved in up to 37% of drug resistant clones, each having retained 

their pluripotency and normal karyotype87. A limited investigation of the ZFN specificity 

showed that there were no mutations generated in cognate off-target sites87. The floxed 

drug resistant gene and reprogramming cassette was excised by transient expression of 

Cre recombinase in corrected iPSCs, demonstrating efficient generation of transgene-

free corrected iPSC cell lines from SCD patients87. A similar study confirmed the 

feasibility of generating gene corrected iPSCs derived from SCD patients using HBB 

ZFNs and donor vector119. However, even after excision of the drug selection cassette 

using the Cre-LoxP system, the endogenous gene expression of the corrected allele was 

only partially restored in erythroid-differentiated cells, likely because of interfering “scar” 

sequences remaining after excision119. Challenges excising the drug cassette and 
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differentiating iPSCs after treatment using nucleases and donor vector may limit the 

clinical applicability of this approach. 

HSCs are more clinically relevant compared to pluripotent stem cells for targeted 

gene editing strategies for treating hemoglobinopathies because they can differentiate 

into healthy RBCs in vivo. The work by Genovese et al. was the first to demonstrate 

successful HDR-mediated gene targeting in human HSCs using site-specific 

nucleases120. In this study, cord blood CD34+ cells were treated with ZFN mRNA and 

donor vector designed to transfer GFP into the mutational hotspot of IL2RG, associated 

with X-linked SCID, and the AAVS1 ‘safe harbor’ site120. The ZFN stimulated HDR 

frequency observed was 5% in bulk cultured CD34+ cells120. In a repopulation assay 

using non-obese diabetic (NOD)/SCID mice, 100% of mice had on average 3% GFP 

positive, targeted cells over the long-term120. CD34+ cells were also treated in the 

Genovese study with IL2RG ZFNs and a targeting vector spanning exons 5-8 of IL2RG 

to stimulate gene correction of SCID-XI deficiency120. Transplantation of treated CD34+ 

cells into NOD/SCID mice resulted in the functional reconstitution of IL2RG, as evident 

by T cells that were physiologically similar to healthy controls 120. Evaluation of off-target 

activity by the IL2RG ZFNs revealed negligible off-target mutation at previously identified 

cognate sites120. In work by Hoban et al., the ZFN platform was applied for targeting the 

SCD mutation in human HSCs121. CD34+ cells treated with HBB ZFNs along with donor 

vector containing a silent restriction fragment length polymorphism showed 18.5% 

average gene targeting121. Similar levels of gene conversion was measured in healthy 

CD34+ cells treated with ZFNs and donor encoding the SCD mutation, and in CD34+ 

cells isolated from SCD patients treated with ZFNs and donor encoding wild type 

HBB121. The corresponding HbA protein level was 5.3% in erythrocytes derived from 

patient CD34+ cells treated with ZFNs and wild type HBB donor, providing evidence that 

precision gene-editing tools can functionally correct hemoglobinopathies121. Although 
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bulk CD34+ cells treated with HBB ZFNs and donor template engrafted equally as 

efficiently as control non-treated cells and differentiated into all expected lineages, there 

was up to a 50-fold reduction in the presence of gene modified cells engrafted in these 

mice compared to the input values 121. High throughput sequencing revealed only 0.85% 

of the bone marrow in mice transplanted with ZFN- and oligonucleotide-treated cells 

were gene modified, whereas the bulk population prior to transplant had 17.3% gene 

modification121. This result suggests that gene modified cells have a competitive 

disadvantage for engraftment compared to unmodified CD34+ cells. An assessment of 

off-target activity revealed that the HBB ZFNs had high levels of specificity with off-target 

modification occurring only in the homologous δ-globin gene (HBD)121. It is unclear 

whether gene modification within the HBD locus will have adverse consequences in a 

clinical setting. These seminal studies demonstrate efficient gene targeting by ZFNs in 

human CD34+ cells, however, further research addressing low levels of engraftment by 

gene modified cells in the xenograft model will be critical for advancing a nuclease-

based therapeutic strategy.  
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Figure 5: Schematic of gene correction approach for treating hemoglobinopathies 

CD34
+
 cells collected from a β-thalassemia or SCD patient and treated with HBB-targeting nucleases and 

donor template DNA. HDR mediated repair of the DSB stimulated by the nucleases will enable transfer of 

the normal copy of HBB gene into the genome. Transfusion of the nuclease induced gene modified HSCs 

will provide long-term replacement of the defective RBCs with healthy RBCs for the lifetime of the patient. 

 

1.8 Future directions 

Nuclease mediated gene correction is an attractive approach as an autologous 

therapy for hemoglobinopathies because it eliminates insertional mutagenesis risks 

associated with gene therapy42,43. However, there are several barriers with gene 

correction using precision gene editing tools that must be addressed to advance its 

clinical application. Firstly, optimizing the design of nucleases and donor template to 

enable high levels of HDR mediated transfer of the normal copy of HBB into the mutation 
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site is a major challenge. Although the donor template can be simplified through single-

stranded oligodeoxynucleotides, their design involves optimizing the length of 

homologous sequences, which may not be straightforward for high levels of gene 

correction. The process for constructing TALENs and ZFNs are difficult to perform, even 

for experienced researchers, and involves complicated, low throughput cloning steps for 

assembling multiple plasmids encoding a single nuclease pair78,122. TALEN RVDs have 

multiple specificities for different nucleotides, leading to cleavage activity in off-target 

sites78. Likewise, zinc finger domains can also tolerate binding to off-target sites and 

display text dependency for high cleavage activity122. The specificity for both platforms 

can be improved by increasing the lengths of the DNA binding domains or through the 

use of heterodimeric FokI nuclease domains77,123. There are several online design tools 

available to help guide the design of TALENs124,125, ZFNs126,127, and CRISPRs126,128-130 

using reagents accessible to the research community and enable accurate prediction of 

their off-target cleavage sites in silico101,131,132. The CRISPR/Cas9 system is easier to 

design and only involves modifying the 20 nucleotide sequence within the sgRNA to bind 

to a new target sequence, but they have been shown to have substantial off-target 

activity99-101, which may limit the applicability of the system for gene therapies. 

Alternatively, the specificity can be improved through the Cas9 nickase system, shown 

to facilitate efficient gene editing with 50-1500-fold lower off-target activity133,134. Future 

studies should investigate gene targeting of the HBB using CRISPR/Cas9 nickases as a 

strategy to enhance HDR activity without compromising the specificity. A challenge 

shared by all precision gene editing tools is accurately quantifying nuclease activity. 

Most studies rely on gel assays that quantify nuclease activity with limited accuracy and 

sensitivity. Alternatively, the traffic light reporter system can be used for measuring both 

NHEJ and HDR in single cells treated with gene editing reagents135, but this system is 

time consuming and difficult to construct. Deep sequencing provides higher accuracy for 
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quantifying gene modification at on- and off-target sites116, but is limited by the high cost 

and time required for processing and analysis. Recently, a novel method called Tracking 

of Indels by Decomposition (TIDE) was developed a faster and cost-effective approach 

for accurate quantification of activity136. TIDE analysis may enable more efficient 

optimization of HBB targeting nucleases. 

Secondly, gene targeting in clinically relevant cells, such as human CD34+ cells, 

requires high levels of nuclease protein expression and sufficient donor template 

delivered into cells. Therefore, the development of delivery methodologies for nucleases 

and donor template is critical for advancing a nuclease-based therapy for 

hemoglobinopathies. The requirement for the donor and nucleases to be encoded by 

separate constructs makes it more challenging to deliver all reagents needed for gene 

targeting into single cells with high efficiency. Integrase deficient lentivirus (IDLV) has 

been shown to provide high levels of nuclear delivery and have significantly reduced 

capacity to integrate into the genome, thus, they are progressively lost during cell 

expansion137. Seminal studies showed that ZFNs and donor template transduced using 

IDLVs results in low levels of gene targeting in CD34+ cells113. A limitation of this 

approach is low permissiveness of human HSCs to multiple infections by separate 

IDLVs encoding nucleases and donor template113. In contrast, delivering the donor using 

IDLV vector transduction and the ZFN mRNA using electroporation resulted in 

considerably higher levels of gene targeting120,121. Interestingly, it was found that cell 

cycle activation through culture stimulation is necessary to obtain optimized levels of 

lentiviral delivery and gene targeting, particularly, in primitive HSCs120. The addition of 

aryl hydrocarbon receptor antagonist and 16,16-dimethyl-prostaglandin E2 to the culture 

media was found to reduce differentiation and may contribute to enhanced gene 

targeting120. Although mRNA delivery of nucleases is less toxic in cells compared to 

plasmid DNA, they still provide high levels of off-target gene modification121. Future 
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studies can investigate whether nuclease specificity and toxicity can be improved 

through the direct delivery of their purified proteins into cells138. 

Thirdly, the therapeutic benefit of functionally corrected HSCs depends on their 

capacity to engraft and provide long-term production of healthy RBCs in a patient. 

Therefore, a critical topic for investigation is the engraftment potential of human CD34+ 

cells treated with nucleases and donor template. The study by Hoban et al. show high 

levels of gene conversion in human HSCS treated with ZFNs and donor template from a 

SCD patient, however, the engraftment potential of the patient HSCs was not 

characterized121. Thus, it is unclear whether gene corrected HSCs from a SCD patient 

would engraft, particularly, within the context of an autologous transplant. Addressing 

this problem will require the development of xenograft models of hemoglobinopathies 

that better recapitulate the disease phenotype.  

The amount of HbF persisting into adulthood influences the severity of 

hemoglobinopathies139. There are a number of different single nucleotide polymorphisms 

identified in patients with hemoglobinopathies associated with persistent HbF production 

and mild to non-existent disease symptoms140,141. The largest therapeutic effect comes 

from mutations in the BCL11A locus leading to lower levels of BCL11A transcripts 

encoding for a multi-zinc finger transcription factor that binds to discrete regions in the 

HBB cluster in adult erythroid progenitors, resulting in reduced transcriptional repression 

of HbF142. BCL11A knock down led to a modest reduction in the levels of BCL11A 

transcripts with concomitant enhanced HbF expression without affecting erythroid 

differentiation in human erythroid progenitor cells142. Therefore, BCL11A represents a 

therapeutic target for treating hemoglobinopathies. It was postulated that directed knock 

down of BCL11A in SCD or β-thalassemia patients would elevate the HbF levels and 

ameliorate the disease severity142. The study by Bauer et al. identified specific 

hypersensitive sites contained within BCL11A intron-2, representing an erythroid specific 
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enhancer element, having a strong association with hereditary persistent HbF143. This 

study demonstrates the application of TALENs for deleting regions flanking 

hypersensitive sites of BCL11A, resulting in the loss of the BCL11A enhancer and 

absence of BCL11A expression in the erythroid lineage, while not affecting BCL11A 

expression in non-erythroid cells143. In recent phase I clinical studies by Sangamo, 

erythrocytes differentiated from human HSCs treated with BCL11A ZFNs showed 

elevated levels of HbF, consisting of over 40% of all hemoglobin144. Comparable levels 

of HbF were observed in HSCs isolated from β-thalassemia patients144. Furthermore, the 

HSCs modified with BCL11A ZFNs were capable of engraftment in the xenograft mouse 

model and showed low levels of off-target activity144.  

Overall, we look forward to the development of a gene therapy for 

hemoglobinopathies. Targeted correction of the HBB locus or BCL11A down regulation 

through the application of precision gene-editing tools may enable the development of a 

novel curative autologous therapy. Further research efforts addressing design, 

specificity, and delivery of gene targeting reagents into HSCs and the development of 

mouse models for accurately quantifying the repopulation efficiency by gene corrected 

human HSCs is critical for the clinical translation of the strategy. 
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CHAPTER 2: THESIS DISSERTATION OVERVIEW 

 

2.1 Introduction 

An effective therapy for SCD is urgently needed. Currently, the only FDA 

approved drug for ameliorating the clinical features of SCD is hydroxyurea therapy, 

shown to be effective in some patients and is associated with unclear risks from long-

term use11. HSCT is the only curative therapy for SCD, but is not available for the vast 

majority of patients due to stringent eligibility requirements, including an HLA-matched 

donor18. Gene therapy involving the non-targeted insertion and forced expression of 

normal or anti-sickling HBB variants has been proposed, showing promising results for 

functionally correcting the disease phenotype in murine models34,35 and in human clinical 

trials51. The major issue with gene therapy is the risk of insertional mutagenesis as 

observed in the clinical trial for X-linked SCID41,43. A novel curative approach for SCD 

involves the application of precision gene-editing tools to stimulate targeted gene 

correction of the disease causing mutation in HSCs. One major hurdle is delivering 

nucleases along with donor template into HSCs ex vivo with high delivery efficiency120,145 

while maintaining the cell viability and engraftment potential. This dissertation explores 

and compares different ex vivo delivery methods, namely, microinjection and 

nucleofection, for nuclease-mediated gene modification and determines the nuclease 

targeting efficiency and specificity. 
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2.2 Specific Aim 1 

Microinjection has many advantages, namely, the ability to precisely control the 

amount of molecules delivered into single cells with theoretically 100% efficiency and 

accuracy146. For difficult to transfect cells, microinjection is an attractive option because it 

obviates the need to use antibiotic selection for cell enrichment, making injection less 

toxic and stressful in cells146. In this aim, we will develop a system for microinjecting 

human suspension cells using glass microcapillaries. The innovative feature of this aim 

will be adapting a microinjection technique, traditionally used for adherent cells, and 

applying it for injecting somatic cells grown in suspension. Because human CD34+ cells 

and culturing media are expensive, it will not be feasible to use them during the 

development and characterization of the microinjection system. In lieu of HSCs, we will 

use leukemia K562 cells as a model cell line because they have similar morphology to 

human CD34+ cells, including a high nucleus to cytoplasm ratio, and less expensive to 

culture. We will explore techniques for artificially immobilizing K562 cells to facilitate 

injection using a single glass microcapillary, optimize the rate and efficiency of injection, 

and investigate parameters to accurately control the injection volume. In addition, we will 

quantify the effects of injection on the cell viability and proliferation potential in single 

injected cells. 

The second component of this aim is to develop in vitro culturing and 

nucleofection protocols for human CD34+ cells. Nucleofection is a modified 

electroporation method involving the application of optimized electrical pulses and cell 

line-specific buffers to permeablize the cell membrane and directly deliver molecules into 

the cell nucleus. We will use a 4D-nuclefector and Amaxa nucleofection kits (Lonza) 

containing cuvettes and buffers specific for the K562 cell line and human CD34+ cells. 

K562 cells will be cultured and nucleofected with protocols that are well established by 
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the manufacturer and provide high cell viability and transfection efficiency, but there are 

not well established protocols for culturing and nucleofecting CD34+ cells. Therefore, the 

development of in vitro culturing and nucleofection protocols for CD34+ cells will 

represent a meaningful contribution to the field. We will compare the effects of 

nucleofection on the cell viability and gene expression efficiency in K562 cells and 

CD34+ cells.  

 

2.3 Specific Aim 2 

In this aim, we will compare microinjection and nucleofection for the delivery of 

HBB nucleases and donor template for gene modification in K562 cells. We will quantify 

the nuclease-mediated on- and off-target insertions and deletions (indels) in K562 cells 

injected with HBB TALENs and CRISPR/Cas9 nucleases using the microinjection 

system developed in Specific Aim 1. The indels in K562 cells microinjected with 

nucleases will be compared to nucleofected cells. We will apply single cell analysis to 

quantify and compare the types of allelic disruptions and indel spectra by the TALEN 

and CRISPR/Cas9 nucleases. In addition to investigating nuclease-induced indels, we 

will quantify the frequency of HDR-mediated gene modification in single K562 cells 

injected with HBB TALENs and CRISPR/Cas9 nucleases along with donor template 

DNA. To validate the microinjection delivery approach, the frequency of HDR-mediated 

gene modification measured will be compared to nucleofected cells. The completion of 

this aim will provide insight into the feasibility of applying microinjection for delivering 

precision gene-editing tools for gene correction of the SCD mutation as a potential 

therapeutic delivery approach. 
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2.4 Specific Aim 3 

The genomic toxicity of nucleases is caused by its off-target cleavage activity and 

exposure in cells. Nucleases are typically delivered as plasmid DNA, which is inherently 

toxic in cells116. Because plasmid DNA can remain stable in cells for long periods of time, 

it is difficult to control the level of nuclease expression and duration of active nucleases 

in the cells. Alternatively, nucleases can be delivered as mRNA or purified proteins138,147 

to eliminate the toxicity associated with plasmid DNA and reduce the levels of off-target 

cleavage activity. In this aim, we will for the first time, as far as our knowledge, directly 

compare gene modification by RNA-guided nucleases delivered as plasmid DNA, 

mRNA, and ribonucleoprotein (RNP) complexes. We will separately optimize the delivery 

of HBB targeting sgRNA and Cas9 nucleofected as plasmid DNA, mRNA, and RNP 

complexes into K562 cells. We will identify the amount of reagents that provides the 

highest on-target activity, and subsequently compare the ratio of off-target to on-target 

indels to determine the strategy that provides the highest specificity. In addition, we will 

compare the cleavage activity by HBB CRISPR/Cas9 in CD34+ cells nucleofected as 

plasmid DNA, mRNA, and RNPs. We will also compare cord blood to bone marrow 

CD34+ cells to determine if the source of HSCs is a critical factor for nuclease activity. 

Furthermore, we will quantify the levels of HDR-mediated gene-targeting in CD34+ cells 

nucleofected with HBB CRISPR/Cas9 as plasmid DNA, mRNA, and RNP complexes 

along with donor template DNA. In addition, we will use methylcellulose colony forming 

cell (CFC) assay to determine the effects of CRISPR/Cas9 and donor on the proliferation 

and myeloid differentiation potential of CD34+ cells in vitro. Completion of this aim will 

provide insight into the optimized strategy for delivering gene editing reagents to obtain 

high specificity and HDR-mediated gene modification. 
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CHAPTER 3: CHACTERIZATION OF MICROINJECTION AND 

THE COMPARISON OF MICROINJECTION AND 

NUCLEOFECTION FOR GENE EDITING IN K562 CELLS 

 

3.1 Introduction 

Site-specific modification of endogenous genomic loci mediated by engineered 

nucleases has unprecedented potential for a wide array of applications, such as 

engineering model organisms103,148-150 and developing new therapeutic strategies151,152. 

Examples of site-specific nuclease platforms include ZFNs, TALENs and CRISPR/Cas9 

systems. DNA DSB induced by engineered nucleases can be repaired by the NHEJ or 

HDR pathways, leading to genome alterations, such as gene knockout or reconstitution 

at a desired target site153. HDR guided by exogenous donor template DNA having 

homologous sequences on both sides of the break site can be exploited for gene 

correction of mutations causing diseases, such as sickle cell anemia152. The potential 

benefits of nuclease-mediated HDR are the precise control of gene correction instead of 

uncontrollable random gene integration, and enhanced levels of gene correction 

compared to delivering homologous donor template DNA alone into cells. Recently, 

modification of the HBB locus was achieved using TALENs114,115 and the CRISPR/Cas9 

system154, demonstrating the potential for a nuclease-based gene correction approach 

for treating sickle cell anemia. 

One major challenge for advancing nuclease-based therapeutic strategies is to 

deliver optimal levels of nucleases and donor DNA into clinically relevant cell types145. 

Specifically, if the amount of nuclease-encoding plasmid and donor DNA is too low, the 

HDR rate would be insufficient to have a reasonable level of gene correction. On the 
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other hand, if the plasmid and donor DNA levels are too high, a large amount of cell 

death could occur due to cytotoxicity. Thus, it is critical to optimize the delivery protocol 

so that both a high level of nuclease activity and low level of cytotoxicity could be 

achieved. Although viral-based methods have been used for the delivery of gene 

targeting reagents into cell lines155 and stem cells113,156, there are many concerns, 

including random vector insertion, immunogenicity, integrity of packaged vectors, and 

effects of extensive stem cell culturing145,155,157. The most deleterious safety issue 

associated with viral-mediated delivery is potential activation of proto-oncogenes leading 

to tumors as a result of random vector insertion157. Transfection-based methods, such as 

nucleofection, has been used as a nuclease delivery method into primary cells151,156, but 

cell loss due to cytotoxicity156 remains an issue. Furthermore, with transfection it is 

difficult to control the amount of nucleases and donor template delivered into cells.  

As an alternative, microinjection can be used for the direct delivery of nucleases 

and donor template into cells by penetrating the cell membrane using glass 

microcapillaries with fine tips, which has shown to successfully deliver macromolecules 

into human cells158,159. There have been multiple studies demonstrating successful 

microinjection-based delivery of nucleases into embryos for direct production of animal 

models with targeted mutations160-162. Although with low throughput, microinjection 

allows for precise control of the amount delivered into single cells, and can achieve high 

(~100%) delivery efficiency146. For cells that are difficult to transfect, microinjection is an 

attractive alternative and potentially less toxic and stressful to cells146. It may also 

provide a useful tool for characterization and optimization of other delivery methods, 

such as transfection.  

Here we demonstrate microinjection based delivery of nucleases into human 

K562 cells with resulting gene modifications. We characterized a glass microcapillary 

injection system and quantified the effects of microinjection on cell viability and 
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proliferation. Microinjection of plasmids encoding a HBB-targeting TALEN pair and 

CRISPR/Cas9 system respectively into single K562 cells resulted in moderate to high 

levels of cleavage activities as quantified by the T7 Endonuclease I (T7E1) mutation 

detection assay and Sanger sequencing. We also quantified HDR in single K562 cells 

co-injected with HBB-targeting TALENs or CRISPR/Cas9 along with a GFP donor 

template, and determined the off-target cleavage in the HBD and glutamate receptor 

(GRIN3A) genes respectively. Our results suggest that microinjection of engineered 

nucleases, such as TALENs and CRISPR/Cas9 systems, lead to high levels of gene 

editing while minimally affecting the cell proliferation potential and viability. It is expected 

that the same microinjection based approach can be applied to primary cells that grow in 

suspension, including HSCs, and the successful demonstration of nuclease based gene 

editing in K562 cells using glass-needle microinjection may facilitate the development of 

high-throughput microinjection systems for genome editing in primary cells. 

 

3.2 Results 

Early methods tested for glass microcapillary-mediated microinjection   

We tested several different approaches for performing microinjection. Successful 

injection was assessed by supplementing the injection solution with dextran conjugated 

to a fluorescent marker dye, such as FITC- and TRITC-dextran (10 kDa). The first 

microinjection system involved the application of two glass microcapillaries, one 

microcapillary for capturing single cells and a second one for injection (Figure 6). The 

capture capillaries, prepared in house using a micropipette puller, had an outer tip 

diameter of 3-4 µm. We found that using two microcapillaries for injection was limited by: 

1) low throughput injection into cells, 2) deformation of the cells after release from the 

capture microcapillary (Figure 6c), 3) fouling of the capture microcapillary that caused 
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cells to adhere tightly, making it difficult to release cells after injection, and 4) cells with 

successful injection were mixed with non-injected cells. On average we injected roughly 

16 single K562 cells within an hour using the two microcapillary injection approach. After 

6-7 injections, we found that the capture capillary could not release cells due to fouling, 

making it necessary to change the capture microcapillary multiple times during a single 

injection session. 

 

 

Figure 6: K562 cells microinjected using two glass microcapillaries 

(a) Phase contrast image of a single K562 cell captured with a glass microcapillary and simultaneously 

injected with a second microcapillary. Merged phase contrast and fluorescent images of (b) single cells 

successfully injected with FITC-dextran and (c) after release from the capture microcapillary. 

 

We attempted to address the challenges associated with releasing and isolating 

successfully injected cells by utilizing a cell capture and release microfluidic device 

(Figure 7). The device was designed to assemble to an inverted Delta vision microscopy 

system and consisted of a microinjection chamber for injecting cells using two 

microcapillaries (Figure 7a). The device also contained a built in microfluidic channel to 

facilitate the movement and isolation of injected cells into a viewing chamber embedded 

in the microinjection chamber (Figure 7b). There was also a release port connected to 

the chamber designed to enable the isolation of cells through an external channel 
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assembled to the device. We hypothesized that the flow of buffer through the microfluidic 

channel would allow for cells to become released from the capture microcapillary more 

efficiently (Figure 8a). We also hypothesized that the viewing chamber would enable 

monitoring of injected cells for studies on the effects of injection. Testing of the 

microfluidic device revealed that the flow of buffer through the microfluidic channel did 

not drastically improve the efficiency of releasing cells from the capture microcapillary. 

With the device, we could only inject up to 10 K562 cells before having to replace the 

capture microcapillary due to fouling. We also found that it was difficult to isolate the 

cells into the viewing chamber without inflicting cell damage. Many of the cells that we 

attempted to isolate into the viewing chamber became wedged between the filters 

(Figure 8b) that were designed to prevent cells from flowing out of the device through 

the outlet port. During testing, we injected the cells with TRITC-dextran and pmaxGFP 

plasmid DNA. In the first experiment, a flow rate of 1 µL min-1 applied to capture cells 

resulted in only 20% (2 out of 10) of the injected cells captured into the viewing chamber. 

The remaining 80% of the injected cells (8 out of 10) were trapped between the filters. 

Contamination prevented quantification of the percentage of cells with gene expression. 

In the second experiment, a flow rate of 2 µL min-1 resulted in 60% (3 out of 5) of 

injected cells captured into the viewing chamber, which was a higher capture efficiency 

compared to the first experiment. At 24 hours after injection, all three injected cells were 

positive for GFP expression (Figure 8c). When we applied a flow rate below 1 µL min-1, 

we were unable to trap any cells into the viewing region. Thus, the efficiency for 

successfully isolating cells into the viewing chamber after release from the capture 

capillary depended on the flow rate of buffer in the microfluidic channel. The low 

throughput injection and cell damage issues were not resolvable. 
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Figure 7: Schematic of cell release and capture microfluidic device 

The microfluidic device assembles with an inverted microscopy system to facilitate the isolation and 

monitoring of cells injected using two microcapillaries. (a) Exterior view of the microinjection chamber and 

interior view of the microfluidic channel that captures cells after injection. (b) Microfluidic channel that 

connects to the viewing chamber for monitoring injected cells and release port for isolating the injected cells. 

The drawings were prepared by Dr. David Myers at the Georgia Institute of Technology. 
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Figure 8: K562 cells monitored after injection using two microcapillaries 

Cells were injected with solution supplemented with 100 uM TRITC-dextran and 2 ng uL
-1

 pmaxGFP plasmid 

DNA.  (a) Merged phase contrast and fluorescent microscopy images of 2 different cells after injection using 

the two microcapillary method. (b) Two separate phase contrast images of cells after release from the 

capture microcapillary and found wedged between filters. (c) Phase contrast and fluorescent images of a 

cell injected at 24 hours after injection. The injected cell was positive for dextran and GFP fluorescence. 

 

The third approach tested involved capturing the cells using a microfluidic cell 

holder device to facilitate microinjection using a single glass microcapillary. The major 

benefit of using one microcapillary for injection is it eliminates the issues associated with 
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using a capture microcapillary, including microcapillary fouling and low efficiency for 

releasing cells after injection, and the approach potentially increases the throughput of 

injection. The microfluidic device was designed with C-shaped holders to trap cells using 

the flow of media through a microfluidic channel. In the first experiment, roughly 2.4 x 

105 K562 cells were deposited on one side of the chamber and a flow rate of 400 µL min-

1 was applied for 10 minutes to trap cells into the holders. Only 21% of the holders were 

occupied by a cell (Figure 9). Adjusting the flow rate did not improve the efficiency of 

trapping cells. One contributor to the low efficiency for trapping is the process of initiating 

and maintaining flow in the microfluidic channel. Manual generation of flow through the 

outlet was necessary due to clogging of cells at the outlet/inlet ports, reducing consistent 

flow through the chamber. Another challenge was microinjecting the cells trapped in the 

holder without causing damage to the injection microcapillary. 

 

 

Figure 9: K562 cells in cell holder microfluidic device 

Fluorescent and merged phase contrast and fluorescent images of K562 cells trapped in cell holders. One 

cell was injected with FITC-dextran, shown by white arrow.   
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Microinjection on retronectin-coated polystyrene dishes 

The fourth approach tested for microinjection into K562 cells involved the 

immobilizing of cells on polystyrene surfaces coated with retronectin (Figure 10a). The 

success of injection was assessed by supplementing the injection solution with FITC-

dextran as a fluorescent marker. Retronectin is recombinant human fibronectin 

consisting of a CS-1 site and RGDS domain that interact with the α4β1 and α5β1 integrins 

expressed on K562 cell membranes163. Injections were performed at ambient conditions 

at a rate of ~4 cells per minute with injection sessions limited to 40 minutes per plate to 

ensure high cell viability. Cells adhering to retronectin-coated surfaces had a flattened, 

spherical morphology and remained firmly bound following injection (Figure 10a). We 

evaluated the effects of the cell-matrix interaction on cell viability by seeding and 

detaching cells on polystyrene surfaces coated with solutions containing different initial 

retronectin concentrations. Consistent with a previous study159, detachment of cells from 

retronectin surfaces after incubation for 1.5 hours and attachment did not significantly 

affect the cell viability, even at increasing concentrations of retronectin (Figure 10b). 

However, the retronectin concentration had an effect on the attachment of cells under 

the force applied by the glass microcapillary during injection (Figure 11). We found that 

the highest level of successful injection (82%) was achieved with an initial retronectin 

concentration of 50 µg mL-1 or greater in the coating solution (Figure 11). Cells 

immobilized on retronectin-coated surface had a cell viability of ~63-72% after injection 

(Figure 11), which was estimated by the percentage of cells that retained the dextran 

fluorescence and maintained membrane integrity after a 2 hour incubation period 

following injection. We applied the retronectin-mediated microinjection approach for all of 

the following experiments. 
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Figure 10: Microinjected K562 cells on retronectin coated dishes 

(a) Fluorescence and phase contrast microscopy images of successfully injected cells immediately following 

injection. (b) Cell viability was not affected by retronectin, as shown by the percentage of live cells detached 

from dishes coated with solutions containing different Retronectin concentrations. For each sample, cells (3 

X 10
4
) attached to coated dishes were detached using pipetting. Bars represent statistical mean for 3 

replicates ± standard deviation. (c) Fluorescence microscopy images of K562 cells injected with dextran-

TRITC and pmaxGFP plasmid at 24 hours after injection. Cells with successful injections (red) were 

analyzed for GFP expression (green). Scale bar width corresponds to 10 µm. 

 

 

 

Figure 11: Microinjection efficiency and cell viability after injection 

Percentage of successfully injected (red bars) and intact cells (blue bars) on surfaces coated with solutions 

containing different concentrations of retronectin. Intact cells are defined as retaining dextran fluorescence 2 

hours after injection. Each experiment consisted of 30-40 cells injected at each initial coating concentration. 

The experiments were repeated 3 times. Error bars represent standard deviation. 
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Injection parameter optimization 

A clear advantage of microinjection is that the injection volume is precisely 

controlled146. We used a FemtoJet (Eppendorf) microinjector to precisely control the 

volume released by adjusting the applied injection pressure and duration of injection. To 

generate a standard curve correlating injection pressure and volume, we injected dye-

labeled dextran into mineral oil using different injection pressures and fixed injection time 

of 0.1 seconds and measured the diameter of the injected spheres using a 

micrometer164. The results obtained (Figure 12a) are consistent with the volume vs 

pressure measurements reported in a study165 that used a different approach for 

estimating the injection volume. To determine the optimal injection pressure, cells 

immobilized on a retronectin-coated surface were co-injected with TRITC-dextran, a 

fluorescence reporter for injection, and pmaxGFP plasmid DNA with different injection 

pressures ranging from 30 to 120 hPa (corresponding to injection volumes between 3 to 

30 pL). At 24 hours after injection (Figure 10c), signal from dye-labeled dextran was 

used to identify the injected cells166 and the percentage of injected cells that exhibited 

GFP fluorescence was quantified167 (Figure 12b). We found that an injection volume of 

7 pL gave the highest amount of GFP-expressing cells (Figure 12b). Injection volumes 

greater than 30 pL resulted in noticeable cell damage and cell death (data not shown). 

Thus, for all subsequent microinjection experiments an injection volume of 7 pL was 

used. 
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Figure 12: The effects of injection pressure on injection volume and gene expression 

(a) Plot of injection volume for different injection pressure settings. The injection volume was estimated 

experimentally by performing injections of dye labeled dextran into a droplet of mineral oil. The injected 

sphere was estimated using the equation 
4

3
𝑟3𝜋 for pressure settings between 100-180 hPa, where r is the 

radius of the injected solution measured using a micrometer. The equation for the best fit exponential curve 

was used to estimate the volume for injection pressure settings below 100 hPa. (b) Plot of percentage of 

injected cells with observable GFP expression at 24 hours after injection with different pressure settings. 
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Bars represent mean percentage of GFP expressing cells out of 35-56 cells injected ± standard deviation for 

4 independent experiments. 

 

The effects of microinjection on cell doubling time 

The effect of glass microcapillary injection on cell doubling time was evaluated. 

Cells successfully injected with FITC-dextran or nucleofected with pmaxGFP plasmid (as 

positive control) at 24 hours after delivery were deposited into Terasaki MicroWell plates 

at 1 cell per well using fluorescence activated cell sorting (FACS) (Figure 13) and 

subsequently cultured for two days. Non-treated cells detached from retronectin-coated 

or uncoated plates were used as controls. The cell number in each well was counted at 

24 and 48-hours after sorting and the cell doubling time was quantified. We estimated 

the doubling time for control cells to be 20-22 hours, which is similar to the doubling rate 

reported in the literature168. Consistent with that shown previously159, microinjection had 

no adverse effect on the cell doubling time (Figure 14), and nucleofection did not have 

much effect on the cell doubling rate either. 
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Figure 13: Separation of microinjected K562 cells using FACS 

Cells injected with dextran-FITC were detached from retronectin coated dishes after injection and subjected 

to fluorescence activated cell sorting. (a) Panels show stable dextran fluorescence in cells gated for viability. 

For clarity, the control and injected K562 cells are shown in black and gray boxes respectively. (b) 

Fluorescence and phase microscopy images of injected cells after FACS. Scale bar width corresponds to 

500 µm. 
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Figure 14: K562 cell doubling time after microinjection and nucleofection 

Viable K562 cells were deposited as single cells into Terasaki MicroWell plates using FACS at 24 hours 

after injection of dextran-FITC or nucleofection of pmaxGFP. (a) Fluorescence microscopy images of 

injected cells at 24 hours and 48 hours after FACS. (b) Plot of the cell doubling time for viable control and 

treated cells. The doubling time was calculated using the equation: duration times log (2) divided by the cell 

growth in 24 hours. As controls, we show the cell doubling time for viable untreated cells in suspension and 

detached from retronectin coated plates. One-way ANOVA indicates absence of significant difference 

between different conditions (p > α, α= 0.05). Scale bar width corresponds to 100 µm. Bars represent mean 

cell doubling time ± standard deviation (n = 3). 
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Controlled delivery of HBB-targeting nucleases using microinjection 

Microinjection enables simultaneous delivery of multiple genome editing 

reagents, including nucleases and donor template DNA, into cells. An added advantage 

of microinjection over other delivery methods is the precise control of the amount 

delivered into cells. To demonstrate the ability of microinjection based delivery for 

genome editing, K562 cells were injected with plasmids expressing TALENs or 

CRISPR/cas9 respectively, and the nuclease on- and off-target activities were 

quantified. The TALEN pair L4 (left TALEN) and R4 (right TALEN) used in this study was 

designed to target the HBB gene114, the target sites shown in Figure 15a. The L4-

TALEN overlaps the sickle mutation in codon 6 of the HBB locus, separated by a 15-

base spacer from the R4-TALEN binding site (Figure 15a). The CRISPR RNA R02, a 

20-base guide sequence, was designed to target HBB as well154, near the sickle 

mutation (Figure 15a) adjacent to a PAM sequence containing the trinucleotide NGG. 

To label injected cells, in addition to plasmids encoding TALENs or CRISPR/Cas9, K562 

cells were co-injected with FITC-dextran as a fluorescence marker.  



www.manaraa.com

51 

 

Figure 15: Gene editing by HBB-targeting nucleases using microinjection 

(a) Schematic showing targeting sequences of L4-R4 TALEN pair and R02 CRISPR guide RNA aligned to 

the HBB and HBD loci. The CRISPR guide RNA is shown complementary to the reverse stand and is listed 

to the right of the PAM sequence. The ATG start codon and the sickle cell mutation are underlined. Asterisks 

between HBB and HBD indicate mismatches. The A, T, C, and G nucleotides are shown in green, red, blue, 

and black respectively for clarity. (b) Nuclease-induced indel rate as a function of plasmid concentration. 

Plasmids encoding L4-R4 TALENs or R02 CRISPR/Cas9 were microinjected into K562 cells with an 

injection volume of 7 pL and the nuclease-induced cleavage at the HBB locus was analyzed using the T7E1 

assay. Shown is a comparison of the indel rates by L4-R4 TALENs and R02 CRISPR/Cas9 system at 

plasmid concentrations of 50, 100 and 200 ng/µL. 
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 Successfully injected cells were deposited into 96-well plates with 1 cell per well 

on average using FACS. The clonal colonies derived from the single microinjected cells 

after 14-16 days of culturing were pooled together. T7E1 mutation detection assay 

(Figure 16) was performed to quantify the rate of cleavage-induced indels. We found 

that the on-target cleavage rate is dose-dependent and, for the L4-R4 TALEN pair 

tested, the indel rate was 4% at a concentration of 200 ng µL-1 total TALEN plasmid, 

while no measurable activity at concentrations of 50 and 100 ng µL-1 was observed 

(Figure 15b). In contrast, for the CRISPR/Cas9 system tested, much higher indel rates 

were obtained (Figure 15b). Specifically, with plasmid encoding R02 CRISPR/Cas9, 

indel rates of 18%, 27%, 45% were obtained at plasmid concentrations of 50, 100 and 

200 ng µL-1. 

 

 

Figure 16: T7E1 assay for detecting nuclease induced mutations 
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(a) The target locus is amplified using primers. Resulting in amplicons containing the wild type sequence or 

indels induced by NHEJ repair of the nuclease induced DSB. The PCR product is subjected to denaturing 

and annealing to form random duplexes. The addition of T7E1 enzyme will cut the duplexes containing wild 

type and mutant sequences. (b) Gel of PCR amplicons treated with T7E1 enzyme. The addition of the 

enzyme resulted in the formation of two smaller sized, cut bands.  

 

To benchmark the cleavage activity measured in the microinjection studies, we 

compared the on- and off-target activity in K562 cells nucleofected with L4-R4 TALENs. 

Cells were nucleofected with plasmids encoding L4-R4 TALENs using a 4D-nucleofector 

system (Lonza) and cultured for 3-days following nucleofection. The T7E1 assay was 

performed to measure the L4-R4 TALEN induced indels in the HBB locus of bulk 

nucleofected and microinjected cells (Figure 17). Off-target activity was measured in the 

HBD locus, which has a sequence similar to the HBB gene (Figure 15a). Interestingly, 

the mean cleavage activity in microinjected cells was slightly higher compared to 

nucleofected cells, but the difference was not significant (Figure 17). This indicates that 

the L4-R4 TALENs expressed in cells following microinjection are highly active, 

providing further evidence that microinjection works well for delivering genome editing 

reagents into human somatic cells.  
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Figure 17: Comparison of indel frequency induced by the L4-R4 TALEN pair delivered using 
microinjection and nucleofection 

Green and red bars represent mean percent indels in microinjected and nucleofected cells respectively. The 

indels shown for microinjected cells represent the average of 58 single cell clones pooled together. 

 

Single cell analysis of on- and off-target indels 

We performed single-cell analysis of indels in cells microinjected with R02 

CRISPR/Cas9 system and L4-R4 TALENs respectively. Clonal colonies were generated 

from K562 cells microinjected with nucleases by depositing injected single cells into 

multi-well plates (one cell per well) using FACS, followed by culturing for 14 to 16-days. 

On- and off-target activities of clones derived from single microinjected cells were 

measured using the T7E1 assay and the percentage of clones with indels was 

determined. For the R02 CRISPR/Cas9 system, off-target cleavage was evaluated at the 

GRIN3A locus, which was shown to have a high level of off-target cleavage154. We found 

that with the R02 CRISPR/Cas9 system, 36 out of 78 clones (46%) had the HBB locus 

modified while 30 clones (38.5%) showed indels in GRIN3A (Figure 18a). In contrast, for 
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the 53 clones derived from single cells injected with L4-R4 TALENs, 28% on-target 

(HBB) and 24.5% off-target (HBD) indels were found (Figure 18a). Compared with bulk 

measurements, these results may give a more accurate quantitation of the cleavage 

efficiencies of CRISPR/Cas9 and TALENs, since the amount of nuclease-encoding 

plasmids delivered is more uniform among the cells. 

To gain additional insight into nuclease-induced DNA cleavage, the clones 

having measurable indel rates at HBB were further analyzed using Sanger sequencing. 

PCR primers used to amplify the HBB gene for sequencing were designed with a 5’ 4-

base barcode (Supplementary Table 3) so that each clone has a unique sequence 

identifier. The percentage of clones that had 1, 2, 3 or > 3 mutations in the HBB gene 

was quantified. We found that, of the 36 clones having R02 CRISPR/Cas9 induced 

cleavage at HBB, 22 (61.1%) had 3 HBB mutations (Figure 18b), indicating a high level 

of Cas9 activity with HBB cleaved in all three copies of chromosome 11 (Figure 18a). 

Given that K562 cells have trisomy in chromosome 11169, clones having more than 3 

HBB mutations is likely a result of cleavage activity by the CRISPR/Cas9 system in 

daughter cells following a cell division. Consistent with results shown in Figures 2b and 

3a, L4-R4 TALENs had lower cleavage activity compared to the R02 CRISPR/Cas9 

system, with only 20% of the clones having 3 HBB mutations (Figure 18b).  
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Figure 18: On- and off-target indels in single K562 cells microinjected with HBB-targeting nucleases 

Cells microinjected with 200 ng/µL plasmids encoding L4-R4 TALENs or R02 CRISPR/Cas9 were expanded 

from single cells into clonal colonies in a 14 to16-day culture. T7E1 assay and Sanger sequencing were 

performed in individual clones and the number of clones having measurable indels was determined. (a) The 

percentages of clones with measurable on- and off-target indels. The off-target indels were detected in the 

GRIN3A and HBD loci for R02 CRISPR/Cas9 and L4-R4 TALENs respectively. N = 78 (R02) and 53 (L4-

R4). (b) The percentage of clones having specific numbers of HBB mutations detected from 8-24 total 

sequencing reads. 

 

We further analyzed the indel spectra induced by R02 CRISPR/Cas9 and L4-R4 

TALENs respectively. We found that cells injected with TALENs had a broad spectrum of 
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indels, including peaks of 21-base and 4-base deletions and 6-base insertions (Figure 

19). Similarly, the CRISPR/Cas9 system induced a broad spectrum of indels as well, 

with sharp peaks of 9-base deletions and a 1-base insertion (Figure 19). The 

observation that 9-base deletion is the most frequent indel in cells injected with R02 

CRISPR/Cas9 is consistent with that for cells subjected to nucleofection (data not 

shown). The difference in indel spectra between CRISPR/Cas9 and TALENs is likely 

due to the specific DNA cleavage induced (blunt ends vs. 4-base overhang) and the 

corresponding repair mechanism.  

 

 

Figure 19: Comparison of indel spectra for cells microinjected with L4-R4 TALENs and R02 
CRISPR/Cas9 

The indels were analyzed in sequences obtained from single cells injected with nucleases. The change in 

the number of base pairs resulting from NHEJ repair of DNA cleavage in the HBB locus was compiled for 

each sequence read. The y-axis represents the percentage of indels with specified number of base pair 

changes. 
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Quantifying nuclease induced gene modification in microinjected cells 

We also investigated HDR-mediated gene modification efficiency for the L4-R4 

TALENs and R02 CRISPR/Cas9 system in cells microinjected using glass 

microcapillaries. The donor template for targeted gene insertion was designed with a 

GFP expression cassette under the Ubc promoter and flanked by approximately 1 kb 

arms of homology from the HBB locus114 (Figure 20). Primers listed in Supplementary 

Table 2 were designed to exclusively amplify the integrated GFP sequence at the HBB 

locus (data not shown).  

 

 

Figure 20: Diagram of GFP reporter system used to detect HDR-mediated gene modification 

Nuclease cleavage and resection yields a substrate for HDR which may involve the use of exogenous β-

Ubc-GFP donor, flanked by 5’ and 3’ homologous fragments of the HBB sequence (middle and bottom). The 

dashed lines indicate the HDR process with the donor template. Gene insertion was confirmed by PCR 

using primers specific for integrated GFP at the target locus, as shown by the green and red arrows 

(bottom). HBB (control) was amplified using primers shown by the blue and red arrows, which bound 

downstream the 3’ homologous region in the HBB locus. 

 

We co-injected the β-Ubc-GFP donor template with L4-R4 TALENs or R02 

CRISPR/Cas9 into cells, isolated injected cells using FACS and formed single cell 
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colonies in a 14 to 16-day culture. Clones were evaluated for GFP expression using 

fluorescence microscopy. We found that many clones from cells co-injected with HBB-

targeting nucleases and β-Ubc-GFP donor were positive for GFP fluorescence, but not 

the case for clones formed with cells injected with donor only (Figure 21a). To confirm 

gene insertion, we extracted the genomic DNA from cells showing GFP fluorescence, 

and PCR amplified the GFP sequence specifically integrated at the HBB site (Figure 

21b). We defined clones with HDR-mediated gene modification as having both GFP 

fluorescence and positive PCR results. To quantify the efficiency of HDR, we determined 

the number of clones with gene modification, divided by the total number of clones 

derived from cells injected with both nuclease and donor. This method of quantifying the 

HDR rate is more rigorous compared to flow cytometry analysis of GFP fluorescence 

alone114 because of the additional requirement for PCR detection of GFP integration at 

the HBB gene locus. Of the 38 clones derived from cells co-injected with R02 

CRISPR/Cas9 and donor template, we observed 4 clones (10.5%) with PCR-confirmed 

gene modification (Figure 21b). In contrast, for clones derived from cells co-injected with 

L4-R4 TALENs and donor template, only 1.6% had PCR-confirmed GFP gene 

modification (Figure 21b). 
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Figure 21: HDR-mediated gene modification in microinjected cells 

(a) Fluorescence microscopy images of clones derived from single cells microinjected with β-Ubc donor with 

or without L4-R4 TALENs or R02 CRISPR/Cas9. Bottom of images are PCR results of integrated GFP or 

HBB (control) for clones. Scale bar corresponds to 500 µm. (b) The percentage of clones with HDR-

mediated gene modification confirmed by both PCR and fluorescence microscopy. The number of single cell 

clones analyzed is shown above each bar. 
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To quantify and compare the frequency of HDR-mediated gene modification 

using microinjection and nucleofection respectively, cells were nucleofected with the β-

Ubc-GFP donor together with HBB L4-R4 TALENs or R02 CRISPR/Cas9 and cultured in 

bulk for up to 21 days. Cells were then analyzed using flow cytometry to obtain the 

percentage of cells having gene-insertion induced GFP fluorescence, and the results 

were normalized using that at Day 3. We found that for cells nucleofected with R02 

CRISPR/Cas9 plus donor template, there was an 11-fold increase in the normalized 

amount of GFP-positive cells compared to cells with donor only (Figure 22a). In 

contrast, there was only a 4-fold increase for cells nucleofected with L4-R4 TALENs plus 

donor (Figure 22b). The higher amount of GFP-positive cells due to CRISPR/Cas9 

induced gene insertion compared to that of TALENs is consistent with the microinjection 

results (Figure 21b).  
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Figure 22: Gene insertion in nucleofected cells 

The percentage of GFP-positive cells was quantified using flow cytometry during a 21-day culture after 

nucleofection with β-Ubc-GFP donor with and without (a) R02 CRISPR/Cas9 or (b) L4-R4 TALENs. The 

plots show normalized percentage of GFP-positive cells at specified days post nucleofection. Asterisks 

indicate significant difference between donor only and donor plus nuclease at specified days. N= 3. 
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3.3 Discussion 

In this work we systematically characterized a microinjection-based method for 

the direct delivery of genome editing reagents into human K562 cells. Similar to that 

reported previously159, we found that adhesion of suspension cells to a surface coated 

with a sufficient concentration of retronectin facilitates microinjection (Figure 10). We 

demonstrated the ability of using FACS to generate clones from single injected cells for 

the analysis of on- and off-target cleavage rates of different nucleases. The results from 

this study indicate that glass microcapillary-mediated microinjection does not adversely 

affect the proliferation potential of cells (Figure 14) and provides well-controlled delivery 

of nucleases and donor templates (Figure 15b). Using this microinjection method, we 

demonstrated high levels of targeted indels (Figure 18) and gene modification (Figure 

21b) in human somatic cells by TALENs and CRISPR/Cas9. This provides a novel 

approach for performing genome editing with precise control of the amount of nucleases 

and donors delivered into single cells. 

Compared with other delivery methods for genome editing, such as transfection, 

nucleofection, viral-based delivery and receptor-mediated protein uptake170, 

microinjection has several potential advantages, including: (1) precise control of the 

amount delivered, (2) applicable to a wide variety of cell types (such as primary cells)159, 

(3) robust in delivering different forms of genome editing reagents (DNA, RNA, 

protein)171, and (4) with minimal waste of reagents146. In particular, precise control of the 

amount of nucleases and donor templates delivered may allow increased gene 

modification efficiency, and reduced cytotoxicity and off-target effects147. Our study is 

among the first to demonstrate the use of microinjection to deliver genome editing 

reagents into human somatic cells and achieve a high level of gene modification, 

including gene insertion.  However, although we were able to microinject up to 1000 
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cells on retronectin coated dishes within 4-6 hours, the microinjection-based approach is 

low throughput, which is a major limitation. Clearly, there is a need to develop high 

throughput microinjection systems, especially for applications where processing a large 

number of cells is required.  

 

3.4 Materials and Methods 

HBB-targeting nucleases and donor constructs 

The HBB NN TALEN (L4-R4) plasmids and β-Ubc-GFP donor template 

constructs described in114 were gifts from Dr. Matthew Porteus at Stanford University. 

The heterodimeric L4- and R4-TALEN target sequences (underlined) separated by a 15-

base spacer region: 5’-GCACCTGACTCCTGTGGAGAAGTCTGCCGTTACTGCCCT 

GTGGGG C-3’. The 20-base target sequence (underlined) following the 3-base PAM for 

the HBB-aiming CRISPR (R02) construct described in154: 5’-

GTGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAC-3’. The nuclease target sites 

overlap or are in close proximity to the sickle cell mutation (bold) in codon 6 of the HBB 

gene.  

Cell culture conditions and transfection 

K562 cells (ATCC, Manassas, VA) were grown in Iscove's Modified Dulbecco's 

Media (IMDM) supplemented with 10% FBS, 2 mM L-glutamine, and 1X 

penicillin/streptomycin supplement (Invitrogen Life Technologies, Grand Island, NY). For 

nucleofections, K562 cells were seeded at 1 x 106 per well in 6-well dishes. The next 

day, cells were nucleofected with specified constructs along with 100 ng pmaxGFP 

(Lonza, Walkersville, MD)  using SF cell line 4D-Nucleofection kit (Lonza) according to 

the manufacturer’s protocol in biological triplicates. At 24 hours after nucleofection, the 
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growth medium was changed in each well. The nucleofection efficiency was determined 

as the percentage of GFP expressing cells at 3 days after nucleofection using an Accuri 

C6 flow cytometer (BD Biosciences, Franklin Lakes, NJ). Suspension cultured K562 

cells and all derivative clones were grown and maintained in the media conditions listed 

above in a humidity-controlled incubator with 5% CO2 at 37°C. 

Microinjection on retronectin coated dishes 

The coating solution was prepared in Dulbecco’s PBS buffer with human 

recombinant fibronectin fragment CH-296 (Retronectin; TAKARA BIO, Madison, WI) at a 

final concentration of 100 µg mL-1 or specified. The coating solution was aliquoted as 

100 uL to coat a circular area of 50.3 mm3 on an untreated polystyrene 30 mm dish. The 

coated dishes were incubated overnight at 4°C and washed with 2% BSA. Roughly 20 x 

104 cells were seeded and attached to each retronectin coated dish by incubating for 

roughly 2 hours at 37°C. Cells were detached from the dishes by gentle pippetting. The 

percentage of viable cells detached from the coated surface was calculated using trypan 

blue staining and automated cell counter (BIO-RAD Laboratories, Hercules, CA). In each 

microinjection experiment, roughly 1000 cells were injected on 4-5 separate retronectin 

coated polystyrene dishes. 

Sterile glass microcapillaries with 0.5 μm inner tip diameter (Femtotips Narrow; 

Eppendorf, Hamburg, Germany) were assembled to a capillary holder. The 

microcapillary position and cell injection was controlled using a programmable InjectMan 

NI 2 micromanipulator (Eppendorf). Cells were visualized by phase and fluorescence 

microscopy using a Delta Vision Microscope system equipped with a computer-

controlled stage. The pressure applied to release the injection solution from the 

microcapillary was supplied by a FemtoJet injector (Eppendorf) with built-in air 

compressor and programmable injection pressure settings to ensure reproducible 
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injections. The pressure settings applied for cell injections: injection pressure of 60 hPa, 

injection time of 0.1 seconds, and counter-pressure of 30 hPa. Injections were 

performed at room temperature. Cells attached to retronectin coated dishes were 

visualized by phase contrast microscopy. The microcapillary tips were lowered over the 

cells until both were in the same focal plane, the injection level was defined and 

programmed into the semiautomatic micromanipulator, which controlled the injection 

movement at a 45° angle. Injected cells were assessed by fluorescent microscopy to 

verify successfully injected cells immediately after injection. The percentage of 

successfully injected cells was determined as the number of fluorescent cells divided by 

the number of cells injected X 100. The percentage of intact cells was determined as the 

number of fluorescent cells at 2 hours after injection divided by the number of 

fluorescent cells immediately after injection X 100. The volume released by the 

microcapillary was estimated by performing injections using various injection pressures 

into mineral oil droplets on a microscope slide using the protocol described in164. The 

injection volume was calculated using the equation V = 4/3 (πr3), where V is the volume 

and r is the radius of the injected liquid, forming a sphere within the oil droplet. We found 

the injection volume has an exponential dependence on pressure and is consistent with 

predictions made in172. 

Preparation of microinjection solution  

Injection solutions were prepared in sterile, cold PBS. 10,000 MW dextran-alexa 

fluor 488 (FITC-dextran; Invitrogen) or 10,000 MW dextran-alexa fluor 594 (TRITC-

dextran; Invitrogen) were adjusted to 1 mg mL-1. Unless specified, pmaxGFP was 

adjusted to 200 ng µL-1, L4-R4-TALEN plasmids were adjusted to 200 ng µl-1, R02 

CRISPR/Cas9 plasmid was adjusted to 200 ng µL-1, and β-Ubc-GFP donor template 

vector was adjusted to 200 or 400 ng µL-1. The pmaxGFP and β-Ubc-GFP donor 
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template constructs contain GFP isolated from the jellyfish Aequorea Victoria. FITC-

dextran was co-injected into cells along with L4-R4 TALENs or R02 CRISPR/Cas9 

constructs as a marker for successful injection. Injection solutions were centrifuged at 

13,000 x g for 20 min at 4°C and the supernatant was directly loaded into 

microcapillaries for injection. 

Isolation of microinjected cells 

Cells microinjected with solution supplemented with FITC-dextran were 

separated by FACS using a FACS Aria II system (BD Biosciences). Cells were gated 

according to FITC fluorescence intensity levels. For the cell doubling experiments shown 

in Figure 14, cells were stained using To-pro3 (Invitrogen) and further gated for viable, 

injected cells. The precision mode of sort was set to single cell to ensure high purity. 

Injected or non-injected cells were deposited 1 cell per well directly into 96-well (Nunc; 

Thermo Fisher Scientific, Waltham, MA) or 72-well (Terasaki MicroWell; VWR 

International, Radnor, PA) tissue culture plates containing growth medium. Single 

injected cells were expanded into clones in a 14-16 day culture.   

T7E1 mismatch detection assay 

A schematic of the T7E1 detection assay is shown in Figure 16. Cleavage 

activity was quantified in pooled or individual clones derived from single cells 

microinjected with L4-R4 TALENs or R02 CRISPR/Cas9 expressing plasmids. The off-

target activity was measured in the HBD and GRIN3A loci for L4-R4 TALENs and R02 

CRISPR/Cas9 respectively as in114,154. The genomic DNA from pelleted cells were 

processed for PCR amplification as described in173. The genomic DNA was harvested 

using QuickExtract DNA extraction solution (Epicenter Biotechnologies, Madison, WI) 

and subjected to PCR amplification of on- and off-target loci using primers listed in 
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Supplementary Table 1. All PCR reactions in 50 µL volume consisting of 1.5 µl 

genomic DNA were performed using AccuPrime Taq DNA High Fidelity Polymerase kit 

(Invitrogen) according to the manufacturer’s protocol for 40 cycles (94°C for 30 sec, 

60°C for 30 sec, 68°C for 45 sec). 200 ng of PCR product supplemented with 1X 

Accuprime buffer II were processed using cycles of melting and re-annealing (95°C for 

10 min, 95-85°C at -2°C/s, 85-25°C at -0.1°C/s). T7E1 (New England Biolabs, Ipswich, 

MA) was added to a final concentration of 250 units/mL and incubated at 37°C for 60 

minutes for digestion of mismatch duplexes. Reactions were resolved on a 2% agarose 

Tris-acetate-EDTA gel stained with ethidium bromide and observed with a UV imaging 

station. The intensity of bands corresponding to cleaved and uncleaved PCR product 

was measured by densitometry analysis using ImageJ software. The percentage of 

indels was estimated using the equation: 100 X (1-(1-fraction cleaved) 1/2) as described 

in173. 

Quantification of HDR-mediated gene modification 

For microinjection experiments shown in Figure 21, cells were microinjected with 

2:1 ratio of L4-R4 TALENs to β-Ubc-GFP donor or 1:2 ratio of R02 CRISPR/Cas9 to β-

Ubc-GFP donor. Successfully injected cells were FACS deposited as 1 cell per well into 

96-well plates and cultured for 14-16 days in growth medium. GFP fluorescence was 

observed in single cell clones using fluorescence microscopy. Genomic DNA from 

individual clones that were positive for GFP fluorescence was harvested and subjected 

to PCR using HBB integrated GFP amplification primers listed in Supplementary Table 

2. Cells with HDR-mediated gene modification were defined as having both GFP 

fluorescence and PCR amplified integrated GFP.  

In nucleofection experiments shown in Figure 22, cells (1 X 106) were seeded in 

6-well plates and nucleofected with 2 µg R02 CRISPR/Cas9 or L4-R4 TALENs with and 
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without 10 ug β-Ubc-GFP donor plasmid. pUC18 (Mock) plasmid was added to bring the 

total DNA amount to 12 ug for each reaction. Cells were incubated in growth medium for 

21-days and the percentage of GFP cells was analyzed using an Accuri C6 flow 

cytometer at specified time points. The percentage of GFP-positive cells was normalized 

using that at Day 3.  

Sanger sequencing for on-target indel rates  

Individual clones derived from single cells microinjected with L4-R4 TALENs or 

R02 CRISPR/Cas9 were PCR amplified using barcoded HBB primers listed in 

Supplementary Table 3.  PCR amplicons from clones that had positive T7E1 results 

were separately ligated into a vector and transformed into competent cells using NEB 

PCR Cloning kit (New England Biolabs) or Zero Blunt TOPO Cloning kit (Invitrogen) 

according to the manufacturers’ protocols. Plasmid DNA from picked E. coli colonies 

were purified and sequenced using Sanger DNA sequencing technology (Operon, 

Huntsville, AL). Barcodes ensured that sequences were properly matched to individual 

clones derived by from single microinjected cells. 

Statistical analysis 

Significance was determined from three or more replicates or samples using 

Student’s t-test or one-way ANOVA. P-values < 0.05 were considered statistically 

significant. Bars or data points in plots are shown as statistical mean ± standard 

deviation.   
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CHAPTER 4: COMPARISON OF CRISPR/CAS9 NUCLEOFECTED 

AS DNA, MRNA, AND PROTEIN IN K562 CELLS 

 

4.1 Introduction 

The recently developed RNA-guided engineered nucleases for robust gene 

editing is the type II CRISPR/ Cas9 protein from Streptococcus pyogenes134. Providing 

protection from invading nucleic acids, CRISPR/Cas9 systems play a role in the adaptive 

immune systems in bacteria97. The Cas9 endonuclease is directed to a target site in the 

genome by a sgRNA through Watson-Crick base-pairing rules97. The Cas9 

endonuclease cleaves the complementary 20 nucleotide target site specified on the 

sgRNA immediately 5’ of the NGG PAM sequence 97. Redirecting the CRISPR/Cas9 to 

nearly any desired target site in the genome requires modification of the targeting 

sgRNA sequence while the other components remain fixed, making the process of 

developing gene-specific CRISPR/Cas9 systems simpler compared to ZFN and TALEN 

nuclease platforms.  

The CRISPR/Cas9 system activates a DSB at its target locus, triggering repair by 

NHEJ or HDR 174. DSB repair via the NHEJ pathway results in indels at the break site, 

generated to obtain alignment in complementary bases for repair, and gene disruption 67. 

The HDR pathway involves high fidelity repair of the broken ends using homologous 

sequences found in sister chromatids, homologous chromosomes or exogenous donor 

template DNA, and can be exploited for targeted gene modification 67. Because of their 

versatility, CRISPR/Cas9 nucleases have been applied for gene editing in human cell 

lines175,176, efficient generation of a wide range of transgenic animal models103-105,107,177, 

and for engineering plants and crops108-110. One unique feature of the system is that the 
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Cas9 endonuclease can be co-delivered with two or more sgRNAs targeting multiple 

sites simultaneously, enabling multiplex disruption within the genome98,107. The 

disadvantage of the CRISPR/Cas9 platform is its high frequency of cleavage activity at 

off-target sites in the genome, potentially resulting in gross chromosomal deletions and 

other types of untoward chromosomal rearrangements99-101. The recent application of 

ZFNs for targeting mutations causing X-linked-SCID120 and sickle cell disease121 in 

human CD34+ cells shows that gene editing tools offer promising curative approaches. 

The facile process of making CRISPR/Cas9 nucleases and their robust gene targeting 

activity makes them highly desirable, providing the impetus to investigate approaches to 

enhance their safety for clinical applications. 

The development of methodologies for delivering gene editing tools is critical for 

their translation into clinical therapies. IDLV vectors have been shown to provide high 

levels of nuclear delivery137, but risks for insertional mutagenesis impedes their clinical 

application. Typically gene editing tools encoded on plasmid DNA are delivered into 

human cell lines with potential insertion of plasmid DNA fragments into the target locus 

or off-target sites in the genome116, and uncontrolled nuclease expression in cells100. 

Alternatively, delivery of transcribed mRNA encoding nucleases has resulted in high 

levels of gene editing120,121. Although RNA delivery is less toxic in cells compared to 

plasmid DNA178, nucleases encoded on mRNA can provide high frequencies of off-target 

gene modification121. Purified protein has been proposed as a strategy to achieve 

controlled nuclease exposure in cells138,147. However, the delivery of purified proteins into 

cells is challenging due to membrane barriers. Recent studies have shown that 

nucleofection and cationic lipid reagents can enable efficient delivery of Cas9 RNP 

complexes into human cell lines, resulting in high frequencies of on-target activity179,180. 

To our knowledge, there have not been previous studies that directly compare 

CRISPR/Cas9 nucleases delivered as a plasmid DNA, mRNA, and RNP complexes. 
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In this study, we optimize nucleofection of HBB targeting CRISPR/Cas9 

nucleases in the human leukemia K562 cell line. We compare the on- and off-target 

activity of the HBB-aiming CRISPR/Cas9 delivered as plasmid DNA, mRNA, and RNPs. 

This study provides insight into delivery strategies that improve the safety of the 

CRISPR/Cas9 system. 

 

4.2 Results 

Nucleofection of protein into K562 cells 

We investigated whether it was feasible to deliver proteins into cells using 

nucleofection. We used Alexa Fluor 488 conjugated bovine serum albumin (BSA) as a 

marker for successful protein uptake into cells. K562 cells were analyzed using flow 

cytometry at 2 hours after nucleofection. The results revealed dose-dependent uptake of 

BSA into cells with the highest uptake observed (96.8%) when 60 ug of Alex Fluor 488 

BSA was nucleofected into cells (Figure 23). These results confirm that purified proteins 

can be nucleofected into cells with high delivery efficiency179.  
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Figure 23: Nucleofection-mediated uptake of BSA into K562 cells 

Plot of percentage of uptake in cells nucleofected with specified amounts of Alexa Fluor 488 conjugated 

BSA. Cells were analyzed using flow cytometry at 2 hours after nucleofection. Control cells were incubated 

with 60 ug Alexa Fluor 488 conjugated BSA without nucleofection or untreated. Bars represent mean 

percent uptake in cells ± standard deviation. N = 4. 

 

Enhancing specificity for CRISPR/Cas9 via RNP and mRNA delivery 

We optimized the nucleofection of HBB-aiming R02 CRISPR/Cas9 into K562 

cells. Cells were harvested at 3 days after nucleofection and the genomic DNA was 

subjected to mutation detection assays to quantify indels. On-target indels were 

measured using the T7E1 assay and the off-target activity was measured in GRIN3A99 

using TIDE136. We observed dose-dependent on- and off-target cleavage activity in K562 

cells nucleofected with plasmid DNA encoding for the R02 CRISPR/Cas9 system 

(Figure 24a). The highest on-target activity measured was 40% with a corresponding 
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9.5% off-target activity when 1 ug of R02 plasmid DNA was nucleofected into cells 

(Figure 24a). We optimized the amount of synthetic R02 sgRNA and Cas9 mRNA 

nucleofected into cells. The Cas9 mRNA encoded for 2 NLS sequences, similarly to the 

R02 CRISPR/Cas9 plasmid DNA. Nucleofecting different amounts of sgRNA with a fixed 

amount of Cas9 mRNA into cells revealed that the on-target indels depended on the 

sgRNA dose (Figure 24b). We observed the highest on-target indels (58.3%) when 10 

ug sgRNA along with 2 ug Cas9 mRNA was nucleofected into cells. Interestingly, the 

dose of sgRNA along with the Cas9 mRNA did not influence the off-target activity 

(Figure 24b). Recombinant Cas9 endonuclease proteins designed with a His-tag for 

purification, FLAG-tag, and two NLS sequences, one on both ends, were purified from 

Escherichia coli. The Cas9 proteins were incubated with R02 sgRNA for 10 minutes at 

room temperature to stimulate RNP complex formation prior to nucleofection. When the 

sgRNA-Cas9 molar ratio was maintained at 1.2, we observed negligible levels of on-

target indels (<4%) even for high amounts of Cas9 protein (Figure 24c). With a sgRNA-

Cas9 molar ratio of 10.3, we observed high levels of on-target indels (33%) with RNP 

delivery (Figure 24c). There was undetectable off-target indels induced by the 

CRISPR/Cas9 RNP complexes in cells (data not shown). These results show that robust 

indels can be generated by CRISPR/Cas9 delivered as mRNA or RNP complexes that 

can be controlled by adjusting the dose. 

We next investigated the effects of CRISPR/Cas9 delivery as plasmid DNA, 

mRNA, and RNP complexes on the targeting specificity. We quantified the off- to on-

target ratio for each delivery strategy providing the highest on-target indels. Although the 

R02 CRISPR/Cas9 mRNA delivery provided higher on-target indels compared to the 

plasmid DNA, it had a lower ratio of off- to on-target indels, which indicates higher 

specificity (Figure 24d). The lowest off- to on-target ratio was observed for the RNPs, 

whereas the plasmid DNA had the highest ratio (Figure 24d). Interestingly, the RNP 
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provided significantly higher specificity relative to the mRNA (Figure 24d). These results 

indicate that CRISPR/Cas9 nucleofected as RNPs and mRNA provides higher specificity 

compared to plasmid DNA. 

 

 

Figure 24: Indels by R02 CRISPR/Cas9 nucleofected as plasmid DNA, mRNA, and RNPs into K562 
cells 

(a) Plot of on- and off-target indels induced by the HBB-aiming R02 CRISPR/Cas9 delivered as a plasmid 

DNA into cells. (b) Indels induced by Cas9 mRNA with different amounts of synthetic R02 sgRNA specified 

below the plot. (c) On-target indels induced by different amounts of Cas9 purified protein and sgRNA 

complexes. Specified below the plot are the amounts of sgRNA and Cas9 protein, and sgRNA-Cas9 molar 

ratios. Indels induced by the control was shown in each plot. (d) Plot showing the ratio of off- to on-target 

indels induced for plasmid DNA, mRNA, and RNP complex conditions that provided the highest on-target 

indels. Bars represent the average of 2 biological replicates ± the standard deviation. The p-value for is 

shown to indicate statistical significance. 
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HDR in K562 cells nucleofected with CRISPR/Cas9 and donor vector 

Next, we investigated the frequency of HDR-mediated gene medication in K562 

cells nucleofected with the CRISPR/Cas9 plasmid DNA, mRNA, and RNPs along with 

donor plasmid DNA. The donor vector contained an EcoRI restriction site, and right and 

left homology arms to the HBB gene, which included silent point mutations to prevent 

binding and cleavage by the R02 sgRNA. The insertion of the EcoRI restriction site via 

the HDR pathway (Figure 25a) was quantified using a restriction fragment length 

polymorphism (RFLP) assay (Figure 26) at 3 days after nucleofection. The amount of 

donor vector in the initial nucleofection solution was the same for each sample to ensure 

that any potential difference in HDR was due to the delivery strategy. We nucleofected 

the same amount of R02 CRISPR/Cas9 plasmid DNA, mRNA, and RNP used in Figure 

24d. We observed similar rates of HDR (roughly 20%) in cells nucleofected with 

CRISPR/Cas9 plasmid DNA, mRNA, and RNPs (Figure 25b). This result indicates that 

CRISPR/Cas9 delivered via RNPs and mRNA provides similar levels of HDR as plasmid 

DNA.  



www.manaraa.com

77 

 

Figure 25: Gene modification by R02 CRISPR/Cas9 system and donor vector quantified using RFLP 
assay 

(a) Schematic of the RFLP reporter system used to detect HDR-mediated gene modification. Nuclease 

cleavage and resection yields a substrate for HDR which may involve the use of exogenous HBB-EcoRI 

donor, flanked by 5’ and 3’ homologous fragments of the HBB gene containing silent point mutation to 

prevent binding and cleavage by the R02 sgRNA. The dashed lines indicate the HDR process with the donor 

vector. Gene modification was confirmed by PCR using primers specific for the target locus, as shown by 

the green and red arrows, and the addition of EcoRI restriction enzyme. (b) Plot of the percentage of alleles 

repaired via the HDR pathway in cells nucleofected with R02 CRISPR/Cas9 plasmid DNA, mRNA, and 

RNPs along with HBB-EcoRI donor vector. Bars represent the average of 2 biological replicates ± the 

standard deviation.  
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Figure 26: HDR frequency by R02 CRISPR/Cas9 and HBB-EcoRI donor vector measured using the 
RFLP assay in K562 cells 

PCR products from genomic DNA extracted from cells nucleofected with R02 CRISPR/Cas9 plasmid DNA, 

mRNA, or RNP complexes along with HBB-EcoRI donor vector. Control cells were nucleofected with donor 

only or untreated. Purified PCR amplicons (200 ng) were treated with EcoRI restriction enzyme before 

loading on a gel. The bottom, lower molecular weight band represents the cleaved band. Shown below is the 

percentage of HDR quantified using densitometry analysis. Biological duplicates are shown for each sample. 

 

4.3 Discussion 

A major motivation for this study is the urgent need for delivery methodologies to 

enhance the safety of gene editing tools. There have been several recent studies 

focusing on delivering nucleases as purified proteins138,170,181 as a strategy to enhance 

the nuclease specificity, which is particularly a concern for CRISPR/Cas9 systems99. In 

this study, we compare the delivery of HBB-targeting CRISPR/Cas9 nucleases delivered 
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as plasmid DNA, mRNA, and RNPs (Figure 24). In our comparison studies, we used 

Cas9 endonucleases that have a dual NLS sequence. For the first time, we show that 

CRISPR/Cas9 RNPs can be nucleofected with high efficiency and provide higher 

specificity compared to mRNA and plasmid DNA (Figure 25d). The delivery of 

CRISRP/Cas9 via mRNA nucleofection provides higher activity and specificity compared 

to plasmid DNA, although the difference observed is not significant. For the RNP 

delivery, we show that a critical factor for optimizing cleavage activity is the sgRNA-Cas9 

protein molar ratio. A sgRNA-Cas9 protein molar ratio of 10.3 provided high levels of on-

target indels (Figure 24c). We also found that the delivery of CRISPR/Cas9 via RNP 

and mRNA provided robust HDR-mediated gene modification that was similar to plasmid 

DNA (Figure 25b). It will be interesting to further investigate whether the CRISPR/Cas9 

activity can be further optimized using smaller amounts of purified Cas9 protein to 

improve the efficiency of the approach and eliminate the waste of reagents.  

 In conclusion, we show that HBB CRISPR/Cas9 nucleofected as RNPs and 

mRNA provide higher specificity compared to plasmid DNA and without altering the 

levels of HDR-mediated gene modification in human cells. The safety concerns 

associated with CRISPR/Cas9 can be addressed by mRNA and especially RNP 

delivery, which have the potential to eliminate off-target cleavage activity and broaden 

the spectrum of its application. 

 

4.4 Materials and Methods 

CRISPR/Cas9 and donor constructs 

The HBB-aiming CRISPR (R02) construct described in 99 has a 20-base target 

sequence (underlined): 5’-GTGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAC-3’. 
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The target site is in close proximity to the sickle cell mutation (bold) in codon 6 of the 

HBB gene. The mRNA encoding the R02 sgRNA and Cas9 were ordered from TriLink 

Biotechnologies (San Diego, CA). The Cas9 plasmid DNA, mRNA, and purified protein 

contained a dual NLS to increase importation into the cell nucleus. Purified Cas9 

proteins were generously supplied by Dr. Charles Gersbach at Duke University. 

Specified amounts of Cas9 protein and sgRNA was mixed and incubated at room 

temperature for 10 minutes to induce RNP complex formation. The HBB-EcoRI donor 

vector used to quantify HDR-mediated gene targeting was designed with right and left 

homology arms from the HBB locus isolated from K562 cells that contained an EcoRI 

restriction site cloned into a puc18 plasmid. The construct sequence of the HBB EcoRI 

donor is found in the supplementary information. 

K562 cell culture and nucleofection  

K562 cells (ATCC, Manassas, VA) were grown in RPMI 1640 (Hyclone, Logan, 

UT) supplemented with 10% fetal bovine serum and 2 mM L-glutamine (Invitrogen Life 

Technologies, Grand Island, NY). K562 cells (2 x 105) were nucleofected with a 4D 

nucleofector (Lonza, Walkersville, MD) using Amaxa SF Cell Line kit (V4XC-2032) and 

program FF-120 according to the manufacturer’s protocol. In the BSA uptake 

experiments, K562 cells were nucleofected with specified amounts of BSA Alexa Fluor 

488 conjugates (Life Technologies, Carlsbad, CA) and analyzed using an Accuri C6 flow 

cytometer (BD Biosciences, Franklin Lakes, NJ) at 2 hours after nucleofection. 

Suspension cultured K562 cells were grown and maintained in the media conditions 

listed above in a humidity-controlled incubator with 5% CO2 at 37°C. 
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Measuring indels using TIDE and T7E1 assay 

Cleavage activity was quantified in pooled K562 cells nucleofected with R02 

CRISPR/Cas9 plasmid DNA, mRNA, or RNP complexes. The off-target activity was 

measured in the GRIN3A locus 99. The genomic DNA was harvested using QuickExtract 

DNA extraction solution (Epicenter Biotechnologies, Madison, WI) and subjected to PCR 

amplification of on- and off-target loci using primers listed in Supplementary Table 5. All 

PCR reactions in 50 µL volume consisting of 1.5 µl genomic DNA were performed using 

AccuPrime Taq DNA High Fidelity Polymerase kit (Invitrogen) according to the 

manufacturer’s protocol. For the T7E1 analysis of off-target indels, 200 ng of purified 

GRIN3A PCR product supplemented with 1X Accuprime buffer II were processed using 

cycles of melting and re-annealing (95°C for 10 min, 95-85°C at -2°C/s, 85-25°C at -

0.1°C/s). T7EI (NEB, Ipswich, MA) was added to a final concentration of 250 units/mL 

and incubated at 37°C for 60 minutes for digestion. Reactions were resolved on a 2% 

agarose Tris-EDTA gel stained with ethidium bromide. The percentage of off-target 

indels was estimated by densitometry analysis using ImageJ software and the equation: 

100 X (1-(1-fraction cleaved) 1/2) as described in 173. For quantifying the on-target indels 

using TIDE 136, purified HBB PCR product were Sanger-sequenced using the forward 

and reverse primers separately, and subsequently analyzed using the online TIDE 

software (accessible at http://tide.nki.nl).  

RFLP assay for quantifying HDR-mediated gene modification 

K562 cells were nucleofected with HBB-EcoRI donor vector with and without R02 

CRISPR/Cas9 delivered as plasmid DNA, mRNA or RNPs. The genomic DNA was 

harvested from the cell pellet using QuickExtract DNA extraction solution and subjected 

to PCR amplification of the HBB gene using RFLP primers listed in Supplementary 

http://tide.nki.nl/
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Table 6. 200 ng of the purified PCR product was supplemented with 1X CutSmart and 

10 units of EcoRI enzyme (NEB) and was incubated at 37C for 1 hour for digestion. The 

samples were resolved on a 2% TRIS-EDTA gel stained with ethidium bromide. The 

cleaved bands corresponding to alleles containing the EcoRI site were quantified by 

densitometry analysis using ImageJ software. 

Statistical analysis 

Significance was determined using the Student’s t-test. P-values < 0.05 were 

considered statistically significant. Bars in plots are shown as statistical mean ± standard 

deviation.  

  



www.manaraa.com

83 

CHAPTER 5: NUCLEOFECTION PROTOCOL OPTIMIZATION 

AND GENOME EDITING IN HUMAN CD34
+
 CELLS 

 

5.1 Introduction 

HSCs are critical substrates for treating SCD using precision gene engineering 

tools. Recently there have been several studies that demonstrate the application of 

ZFNs120,121,151, TALENs116, and CRISPR/Cas9 systems182 for gene modification in human 

CD34+ cells. The most advanced showing gene correction of SCD is the one by Hoban 

et al. that demonstrated successful gene correction of the SCD mutation in 18.4% of 

alleles in CD34+ cells isolated from the bone marrow (BM) aspirates of a SCD patient121. 

Functional correction of the SCD mutation was confirmed by analysis of the globin 

tetramers, which showed 5% induction of HbA in samples treated with HBB-targeting 

ZFNs and donor template121. The study also showed high levels of off-target activity by 

the ZFNs in the homologous HBD gene121. Although these results are promising, there 

are concerns about the safety of the gene editing strategy and feasibility as a clinical 

therapy for SCD. It is of paramount interest to enhance the safety of gene editing tools 

without compromising the frequency of HDR-mediated gene correction. One strategy 

that takes advantage of the robust cleavage activity offered by the CRISPR/Cas9 system 

while limiting its off-target activity is the D10A mutant Cas9 nickases (Cas9n) that targets 

opposite strands of the target site by a pair of offset sgRNAs133. This double-nicking 

strategy was shown to provide up to >100-fold greater specificity and comparable HDR 

compared to the wild type Cas9 nuclease133. This study will explore the application of 

Cas9n for gene editing in CD34+ cells. To our knowledge, there are no previous studies 

that compare RNA-guided nucleases and nickases in CD34+ cells. 
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Nucleofection is an attractive approach for delivering gene editing tools because 

it provides the versatility for delivering nearly any type of molecule, including DNA, 

mRNA, and proteins120,179,183. Although nucleofection has been shown to provide high 

transfection efficiency (>80%) with a mean survival of roughly 50% in CD34+ cells184, 

there are many factors, including the number of cells used in the nucleofection reaction 

and cell culturing protocol, that may influence the cell viability and gene expression after 

nucleofection184. The absence of standardized cell culturing protocols makes the 

application of the nucleofection technique particularly challenging in HSCs. Studies that 

apply nucleofection for delivering gene editing tools into HSCs, typically deliver the 

nucleases as plasmids151 or mRNA121. To our knowledge, there have not been any 

studies in the literature that directly compares the delivery of nucleases as plasmid DNA, 

mRNA, and purified proteins in HSCs. 

 In this study, we will explore the application of nucleofection for delivering HBB-

aiming CRISPR/Cas9 nucleases and nickases as mRNA, DNA, and protein into CD34+ 

cells. We will compare BM and umbilical cord blood (CB) sources of CD34+ cells for cell 

viability, transfection efficiency, and nuclease cleavage activity. Finally, we will address 

the feasibility of applying drug selection to enrich for gene corrected CD34+ cells 

nucleofected with the CRISPR/Cas9 system and donor template. 

 

5.2 Results 

Optimization of in vitro cell culturing and nucleofection protocols for human CD34
+
 cells 

We applied the Amaxa 4D nucleofector system (Lonza) and P3 Primary Cell 

nucleofection kits to transfect cryopreserved CD34+ cells from healthy donors. The 

advantage of using the 4D nucleofector system is its optimized pre-programmed 
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electrical pulses and buffers for specific cell types and it can be used for nucleofecting 

small numbers of cells (as few as 5 x 104) per reaction in minimal volumes of 

nucleofection buffer. The 4D nucleofector system has been applied in several studies in 

the literature to successfully deliver mRNA and plasmid DNA into freshly isolated human 

HSCs120,151. There are many protocols for culturing HSCs available in the literature that 

involve suspension cultures supplemented with various combinations of early acting 

cytokines, such as stem cell factor (SCF), Flt-3 ligand (Flt3-L), and interleukin-3 (IL-3), 

as well as late-activing cytokines, including thrombopoietin (TPO), interleukin-6 (IL-6), 

and erythropoietin (EPO)185,186. The manufacturer’s recommendation involved 

nucleofecting the CD34+ cells on the same day after thawing. We used StemSpan 

Serum Free Expansion Media (Stem Cell Technologies) as the base media for thawing 

and culturing CD34+ cells. Early and lineage specific-late-acting human cytokines (SCF, 

IL-3, IL-6, and EPO) were supplemented to the base media for cell proliferation and 

differentiation to erythroid progenitors186. When following the manufacturer’s instructions 

to nucleofect cells with R02 CRISPR/Cas9 and pmaxGFP plasmid DNA immediately 

after thawing and using 2 x 105 CD34+ cells per reaction, we obtained drastically lower 

levels of cell viability and nucleofection efficiency in BM and CB CD34+ cells than 

reported in the literature184. At day 2 after nucleofection and culturing in erythroid media, 

the cell viability was 3.5% and 6% in BM and CB CD34+ cells respectively (Figure 27a). 

Given the high cell viability in untransfected cells, it is likely that the stress induced by 

the combination of thawing and nucleofection was the cause for the cell death. With 

prolonged culturing, we observed incremental increase in the cell viability for both BM 

and CB CD34+ cells with each successive day of culturing until the cell viability 

approached that of the untransfected cells, particularly for CB CD34+ cells (Figure 27a). 

The increase in cell viability is likely due to proliferation of the few surviving cells after 

nucleofection, which gradually outnumbered the dead cells. The nucleofection efficiency 
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was estimated by the percentage of cells that were positive for GFP expression. The 

GFP expression was roughly 50% in the surviving cell population for both CB and BM 

CD34+ cells, which gradually decreased during the 10-day culture after nucleofection as 

the successfully transfected cells lost GFP plasmid DNA (Figure 27b). In the literature, 

studies that show high levels of cell survival typically culture the CD34+ cells for 5-48 

hours prior to infection using viral vectors or nucleofection120,151. We hypothesized that 

culturing the cells in cell culture media before nucleofection may enable the cells to 

recover from the thawing process and enhance cell survival after nucleofection. In our 

modified in vitro cell culture and nucleofection protocol, we used expansion media 

(supplemented with Flt3-L, SCF, TPO, and IL-3)185, cultured the cells for 48 hours prior 

to nucleofection, and used 8 x 104 cells per reaction. With the protocol changes, we 

observed a dramatic improvement in the cell viability after nucleofection (Figure 28a). At 

24 hours after nucleofection, we observed >50% live cells in the BM and CB CD34+ cells 

nucleofected with R02 CRISPR/Cas9 and pmaxGFP plasmid DNA (Figure 28a). Similar 

cell viability was observed in CD34+ cells nucleofected in the absence of any substrate 

DNA (Figure 28a), which is an indication that nucleofection itself is responsible for cell 

toxicity whereas the addition of substrate DNA had negligible effects on the cell 

viability151. We applied this improved protocol for nucleofecting CD34+ cells in further 

experiments. 
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Figure 27: CD34
+
 cells nucleofected and cultured in erythroid media 

BM and CB CD34
+
 cells were nucleofected (2x10

5
 cells per reaction) with specified amounts of R02 

CRISPR/Cas9 and pmaxGFP encoding plasmid DNA in duplicates. (a) The percentage of live and (b) GFP
+
 

cells were monitored over 10 days. Untransfected BM and CB CD34
+
 cells are shown as controls. Bars 

represent the mean percentage of live cells or GFP
+
 cells ± standard deviation.  
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Figure 28: CD34
+
 cells nucleofected at 48 hours after culture in expansion media 

BM and CB CD34
+
 cells (8x10

4
 cells per reaction) were nucleofected with specified amounts of R02 

CRISPR/Cas9 and pmaxGFP encoding plasmid DNA after culture for 48 hours in expansion media. 

Samples were nucleofected in duplicates. (a) The percentage of live cells and (b) GFP
+
 cells was 

determined at 24 hours after nucleofection. Cells that were untransfected or nucleofected without DNA are 

shown as controls. Bars represent the mean percentage of live cells or GFP+ cells for each sample ± 

standard deviation. 
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Comparison of HBB CRISPR/Cas9 cleavage activity in CD34
+
 cells  

In the literature, studies have demonstrated high levels of cleavage activity and 

gene modification in human cells nucleofected with nucleases delivered as DNA151, 

mRNA121, and purified proteins179. In Chapter 4, we directly compared CRISPR/Cas9 

nucleofected as plasmid DNA, mRNA, and RNPs and showed that RNP and mRNA 

provide enhanced specificity compared to plasmid DNA in K562 cells (Figure 24). There 

has not been any comparable study in human CD34+ cells. Given that CD34+ cells are 

relatively quiescent and progress through the cell cycle infrequently, it is very likely that 

they will express low levels of nucleases, particularly when delivered as plasmid DNA. 

The advantage of delivering nucleases as an mRNA or purified protein in CD34+ cells is 

that active nucleases are present in the cells more rapidly compared to plasmid DNA 

and have a shorter half-life179. We hypothesized that the delivery of the CRISPR/Cas9 

system as an mRNA or purified protein will provide higher levels of activity compared to 

plasmid DNA. We nucleofected BM and CB CD34+ cells with R02 CRISPR/Cas9 

plasmid DNA, mRNA, and RNPs and measured the cell viability and the nucleofection 

efficiency. We formed an RNP complex prior to nucleofection by incubating the Cas9 

protein with sgRNA for 10 minutes at room temperature. The nucleofection efficiency 

was estimated by the percentage of cells that were positive for GFP expression. At 24 

hours after nucleofection, we observed similar levels of cell viability (51-71.5%) in the 

nucleofected cells (Figure 29a). The cell viability for the RNP was slightly higher relative 

to the plasmid DNA and mRNA delivery, although the difference was not significant 

(Figure 29a). We observed higher frequencies of GFP expression in cells nucleofected 

with eGFP mRNA compared to pmaxGFP plasmid DNA, an indicator that mRNA 

provides faster and more robust gene expression in CD34+ cells (Figure 29b). 

Interesting, we observed significantly higher nucleofection efficiency in the CB CD34+ 
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cells compared to the BM CD34+ cells (Figure 29b). Analysis of the on-target indels 

using TIDE revealed that the delivery of the R02 CRISPR/Cas9 system as plasmid DNA, 

mRNA, and RNP provided variable levels of cleavage activities (Figure 30a). Delivery of 

the Cas9 mRNA and sgRNA provided 14% and 16% on-target cleavage activity in BM 

and CB CD34+ cells respectively (Figure 30a), where the difference in indels was not 

significant. The off-target activity was undetectable (Figure 30b). On the contrary, we 

did not observe any activity in neither BM nor CB CD34+ cells nucleofected with the R02 

CRISPR/Cas9 plasmid DNA (Figure 30a). We observed activity from the RNP complex 

(17%) in BM, but not in CB CD34+ cells (Figure 30a). Given that the nucleofection 

efficiency was higher in CB CD34+ cells (Figure 29b), it is likely that the nucleofection 

efficiency is not the reason for the difference in RNP activity in between BM and CB 

CD34+ cells. Because the activity in BM CD34+ cells had considerable variability, it is 

likely that the amount of RNP complex in the nucleofection reaction was not appropriate. 

The sgRNA-Cas9 molar ratio for the RNP complex nucleofected into CD34+ cells was 

14; higher than the ratio used in K562 cells (Figure 24). It is likely that further 

optimization of RNP complexes in CD34+ cells is necessary to obtain consistent levels of 

activity. 
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Figure 29: CD34
+
 cells nucleofected with R02 CRISPR/Cas9 nuclease delivered as plasmid DNA, 

mRNA, and RNP 

BM and CB CD34
+
 cells were nucleofected with 0.5 µg of R02 plasmid DNA, 1 µg of Cas9 mRNA and 10 µg 

of R02 sgRNA, or 7.5 µg Cas9 protein and 10 µg R02 CRISPR sgRNA (RNP). (a) The percentage of live 

cells and (b) GFP
+
 cells at 24 hours after nucleofection. Bars represent the mean percentage of live cells or 



www.manaraa.com

92 

GFP
+
 cells ± standard deviation. Asterisks represent statistical significance between the BM and CB data, 

where p<0.05. 

 

 

Figure 30: Cleavage activity by R02 CRISPR/Cas9 system in BM and CB CD34+ cells delivered as 
plasmid DNA, mRNA, and RNP 

BM and CB CD34
+
 cells were nucleofected with 0.5 µg of R02 plasmid DNA, 1 µg of Cas9 mRNA and 10 µg 

of R02 sgRNA, or 7.5 µg Cas9 protein and 10 µg R02 CRISPR sgRNA (RNP). (a) On-target indels 

measured using TIDE and (b) off-target indels measured using the T7E1 mutation detection assay at 3 days 

after nucleofection.  
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Indels formed by double Cas9n nucleofected into K562 and CD34
+
 cells 

We next investigated the cleavage activity by an HBB-aiming CRISPR/Cas9n 

system. The double Cas9n have been shown to provide higher specificity compared to 

wild type Cas9 without compromising the gene-targeting activity133. The Cas9n was 

directed to off-set sites in the HBB gene by a pair of sgRNA (R01 and R02) shown in 

Figure 31. K562 cells nucleofected with plasmid DNA encoding for the R01/R02 Cas9n 

pair, had 25% on-target activity (Figure 32c), which was slightly lower the R02 

CRISPR/Cas9 (Figure 24). We confirmed that the K562 cells nucleofected with the 

R01/R02 nickase plasmid DNA had reasonable cell viability and nucleofection efficiency 

(Figure 32). However, when we delivered the R01/R02 Cas9n in BM and CB CD34+ 

cells as mRNA and plasmid DNA we did not observe any on-target indels (data not 

shown). We confirmed that there was reasonable cell viability and nucleofection 

efficiency in BM and CB CD34+ cells nucleofected with plasmid DNA and mRNA 

encoding the R01/R02 Cas9n pair (Figure 33). It is important to note that the amount of 

each R01/R02 sgRNA nucleofected into CD34+ cells along with the Cas9n mRNA was 

half the amount of sgRNA that we nucleofected for the Cas9 nuclease. We hypothesize 

that increasing the sgRNA for the Cas9n pair may help to improve the activity in CD34+ 

cells. 
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Figure 31: CRISPR/Cas9 nickase system targeting the HBB gene 

(a) Schematic of a pair of CRISPR/Cas9 nickases activating a staggered DSB on opposite strands of the 

DNA. Each Cas9 nickase is guided by two different sgRNAs. (b) Targeting sequences for the R01 and R02 

CRISPR sgRNA aligned to the HBB locus. The CRISPR sgRNAs are shown complementary to the reverse 

stand and is listed to the right and left of the PAM sequence for the R02 and R01 CRISPR sequences 

respectively. The ATG start codon and the sickle cell mutation are underlined. The A, T, C, and G 

nucleotides are shown in green, red, blue, and black respectively for clarity.  
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Figure 32: K562 cells nucleofected with R01/R02 CRISPR/Cas9 nickase system 

(a) Percentage of live cells, (b) GFP+ cells, and (c) on-target indels in cells nucleofected with 0.5 ug and 1 

ug RN01_02 CRISPR/Cas9 nickase + 400 ng pmaxGFP plasmid DNA. The percentage of live and GFP+ 

cells were measured at 24 hours after nucleofection. The on-target indels was assessed using TIDE 

analysis at 3 days after nucleofection. Bars represent the statistical mean ± standard deviation. 
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Figure 33: CD34
+
 cells nucleofected with R01/R02 CRISPR/Cas9 nickase plasmid DNA and mRNA 

BM and CB CD34
+
 cells were nucleofected with 0.5 µg R01/R02 CRISPR/Cas9 nickase plasmid DNA or 1 

µg Cas9 nickase mRNA and 5 µg each R01 and R02 sgRNAs. 0.4 µg pmaxGFP plasmid DNA or 0.5 µg of 

egFP mRNA were added to estimate the nucleofection efficiency. (a) The percentage of live cells and (b) 

GFP
+
 cells at 24 hours after nucleofection. Bars represent the mean percentage of live cells or GFP

+
 cells ± 

standard deviation. Asterisks represent statistical significance between the BM and CB CD34
+
 cell data, 

where p<0.05. 
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Drug selection of gene modified K562 cells nucleofected with sickle β-globin donor and 

CRISPR/Cas9-derived nucleases and nickases 

Next we investigated HDR-mediated gene modification in cells nucleofected with 

the CRISPR/Cas9 nucleases and nickases along with donor template. The donor 

applied in the study contained 5’ and 3’ homologous sequence from the HBB gene, and 

the sickle cell HBB cDNA, which can be used for converting wild type to sickle HBB 

(Figure 34a). The βS-donor contained the P140K mutant O6-methylguanine 

methyltransferase (P140K-MGMT) drug selection cassette and mCitrine gene for 

enrichment and quantification of gene modified cells (Figure 34a).  The P140K-MGMT 

confers resistance to the combined treatment of O6 benzylguanine (BG) and 

chemotherapeutic agents, such as 1,3 bis(2-choloroethyl)-1-nitrosourea (BCNU)187. The 

study by Zielske et al showed high levels of in vivo gene selection and reconstitution of 

human CD34+ cells transduced using lentiviral vectors containing the P140K-MGMT 

gene using nonmyeloablated NOD/SCID mice188.  The Zielske study showed that 

engraftment of human HSCs in a nonmyelablated NOD/SCID host required drug 

treatment. Only after the second round of BG/BCNU treatment was there engraftment by 

the human cells in the mice, which consisted of 20% of the bone marrow cells188. 

Substantial in vivo enrichment of gene modified and drug resistant HSCs has also been 

observed in nonmyeloablated β-thalassemia mice with a 66% success rate189. We first 

tested the drug selection enrichment approach using the βS donor while comparing the 

R01/R02 Cas9n and the R02 CRISPR/Cas9 system for HDR-mediated gene 

modification in K562 cells. The procedure for the drug selection experiments in K562 

cells is shown in Figure 34b. When we nucleofected K562 cells with the βS donor and 

R01/R02 Cas9n, we observed low levels of mCitrine positive cells (1.9%) without drug 

selection using BG/BCNU (Figure 35a). We observed higher levels of mCitrine+ cells 
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with the R02 CRISPR/Cas9 (6.4%) prior to BG/BCNU treatment (Figure 35b).  With 

each round of drug selection we observed successive enrichments of gene modified 

cells for both R01/R02 Cas9n and R02 CRISPR/Cas9 (Figure 35). By the third round of 

drug selection, we observed a 16-fold enrichment of mCitrine positive cells with the 

R01/R02 Cas9n and 4-fold enrichment with the R02 CRISPR/Cas9 (Figure 35). On the 

contrary, we observed undetectable levels of mCitrine+ cells in controls nucleofected 

with βS donor only (Figure 35c), which is evidence that the drug selection was specific 

for cells positive for HDR-mediated gene modification. The higher fold increase in gene 

modified cells for the R01/R02 Cas9n pair relative to the R02 CRISPR/Cas9 is likely due 

to differences in drug selection efficiency during the experiments. The higher level of 

mCitrine positive cells for the samples nucleofected with the βS donor and R02 

CRISPR/Cas9 relative to the R01/R02 Cas9n prior to drug treatment is an indication that 

higher HDR is obtained with the CRISPR/Cas9 system133. 
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Figure 34: Drug selection for cells positive for HDR-mediated gene modification 

(a) Schematic of the βS donor plasmid construct containing the sickle cell β-globin cDNA, mCitrine, and 

P140K MGMT drug selection cassette. When repair of a DSB is mediated via the HDR pathway, the entire 

construct will be inserted into the HBB gene. BG/BCNU drug selection was used to enrich for cells that were 

positive for mCitrine fluorescence, which was a marker for HDR. (b) Overview of the drug selection 

experiments in K562 cells. Cells were nucleofected with 2 µg R02 CRISPR/Cas9 nuclease or 1 µg each of 

R01 and R02 CRISPR/Cas9 nickase pair encoding plasmid DAN (1x10^6 cells per reaction) along with 8 µg 

of βS donor and were subsequently subjected to 3 rounds of drug selection. Flow cytometry was used to 

quantify the percentage of mCitrine+ positive cells. 
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Figure 35: Drug selection of gene modified cells nucleofected with the HBB CRISPR/Cas9 nickase 
and nucleases in K562 cells 

K562 cells were nucleofected with the βS donor plasmid along with (a) R01 and R01 CRISPR/Cas9 nickase 

plasmid DNA or (b) R02 CRISPR/Cas9 nuclease plasmid DNA. (c) Cells nucleofected with βS donor 

plasmid only is shown as a control. Samples nucleofected with donor and the nickase or nuclease were 

subjected to 3 pulses of drug selections (P = 1, 2, and 3) using BG/BCNU. Bars represent the mean 

percentage of mCitrine positive cells ± standard deviation, where n = 3.  

 

 

 

Figure 36: Overview of the drug selection experiments in CB CD34
+
 cells 

Cells (8x10
4
 cells per reaction) were nucleofected with 1 µg Cas9 mRNA and 10 µg R02 sgRNA or 7.5 µg 

Cas9 protein and 10 µg R02 sgRNA along with 0.5 µg βS donor and were subsequently subjected to 3 

rounds of drug selection. On day 3 after nucleofection, 500 cells were plated in MethoCult media. Flow 

cytometry was used to quantify the percentage of mCitrine+ positive cells.  

 

HDR-mediated gene modification in CD34
+
 cells with drug treatment 

We next investigated the application of drug selection to enrich for CD34+ cells 

gene modified using the R02 CRISPR/Cas9 system and βS donor. Because the HDR 

repair of nuclease induced DSBs preferentially occurs during the S-phase and is less 

likely to occur in quiescent CD34+ cells190, drug selection may increase the probability of 

detecting HDR in CD34+ cells. CB CD34+ cells were nucleofected with βS donor along 

with R02 CRISPR/Cas9 mRNA or RNP, were cultured in erythroid media, and treated 



www.manaraa.com

102 

with 3 rounds of drug treatment using BG/BCNU (Figure 36). At 24 hours after 

nucleofection, CD34+ cells were plated in H4434 MethoCult (Stem Cell Technologies) 

media (500 cells per plate) and cultured for 14 days. The erythroid and myeloid CFC 

units for each sample was quantified (Figure 37a). We observed variable amounts of 

CFC units, but the difference was not significant for each condition (Figure 37a), an 

indicator that the delivery of donor template with and without R02 CRISPR/Cas9 as 

mRNA or protein did negligibly affect the hematopoietic potential of CD34+ cells in vitro. 

Furthermore, neither DNA nor mRNA substrate delivered using nucleofection had an 

adverse effect on the HSC functionality in vitro and the number of CFC units plated was 

consistent with120. We only observed detectable, but low levels of mCitrine positive cells 

after the second round of BG/BCNU drug selection (Figure 37b). The delivery of donor 

template along with R02 CRISPR/Cas9 mRNA or RNP did not lead to the enrichment of 

mCitrine positive CD34+ cells (Figure 37b) as observed with the K562 cells (Figure 35), 

an indicator that we could not detect HDR mediated gene modification in the CD34+ 

cells. The absence gene modification was not surprising given that HDR occurs rarely in 

CD34+ cells. Furthermore, the βS donor template does not have a built in promoter to 

enable robust mCitrine gene expression and is, instead, driven by the endogenous HBB 

locus, which has low levels of expression in CD34+ cells.  
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Figure 37: CB CD34
+
 cells nucleofected with βS donor along with R02 CRISPR/Cas9 mRNA or RNP 

(a) The number of CFC units measured from 500 cells plated at 24 hours after nucleofection. (b) The 

percentage of mcitrine positive cells after 3 pulses of drug selection. Bars represent the mean CFC units or 

percentage of mCitrine positive cells ± standard deviation, n = 2. 
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5.3 Discussion 

CRISPR/Cas9 nucleases are promising tools for therapeutic gene correction 

because of their high cleavage activity and their simpler design compared to other 

nuclease platforms. However, the major disadvantage of CRISPR/Cas9 systems is that 

they are associated with high off-target activity99-101. Cas9n provide an alternative that 

can reduce the off-target effects, while enabling high cleavage and gene targeting 

activity provided through a sgRNA pair133. One challenge for applying these systems in 

CD34+ cells is obtaining high levels of nuclease or nickase expression and sufficient 

amounts of donor for HDR-mediated gene modification. In this study, we addressed the 

challenge of delivery by optimizing the in vitro culture and nucleofection of CD34+ cells. 

We compared the delivery of the HBB-aiming R02 CRISPR/Cas9 and R01/R02 Cas9n 

pair for cleavage activity in CD34+ cells derived from BM and CB, and investigated the 

application of P140K-MGMT and drug selection to enrich for gene modified CD34+ cells.  

Our results indicate that culturing CD34+ cells in expansion media for 48 hours 

prior to nucleofection was critical for obtaining high levels of cell viability and 

nucleofection efficiency (Figure 28). We found that the CB CD34+ cells consistently 

showed higher gene expression compared to the BM derived CD34+ cells, which may be 

explained by differences in the activities of transcriptional and translational machinery. 

CD34+ cells nucleofected with GFP plasmid DNA showed lower gene expression 

compared to mRNA (Figure 33) consistent with lower transcriptional activity in these 

cells. We found that delivering the R02 CRISPR/Cas9 mRNA or RNP (for BM CD34+ 

cells) provided high levels of indels, whereas there was undetectable activity when 

nucleases were delivered as plasmid DNA (Figures 30). The considerable variability 

observed in BM CD34+ cells nucleofected with Cas9 RNP indicates that the amount of 

sgRNA and Cas9 protein delivered into the cells likely was inappropriate. We also 
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observed undetectable levels of indels by the R01/R02 Cas9n pair delivered as mRNA 

and RNP, likely because of the doses used in the nucleofection reactions. Future studies 

should focus on further optimizing the amount of the R02 Cas9 RNP and the R01/R02 

nickases to obtain high levels of cleavage activity in CD34+ cells. These results suggest 

that CRISPR/Cas9 systems encoded on plasmid DNA is not effective for obtaining high 

levels of nuclease activity, but, rather, future studies should apply RNP or mRNA as 

delivery approaches in CD34+ cells.  

Drug selection of gene modified cells using the P140K-MGMT cassette has many 

clinical applications, including gene correction187. We showed that the delivery of donor 

template encoding P140K-MGMT along with the R02 CRISPR/Cas9 and R01/02 double 

Cas9n can be used to enrich for gene modified K562 cells (Figure 35). Further 

optimization of the drug selection protocol may help to enhance the enrichment 

observed in this study. We did not observe any gene modification in CD34+ cells, which 

is likely because of the donor template and assay design. The gene modified cells was 

estimated by the expression of the fluorescent marker mCitrine, driven by the 

endogenous HBB promoter, which has low activity in K562 cells or quiescent CD34+ 

cells. Future studies should focus on developing a donor template that will provide high 

levels of HDR in CD34+ cells. Single stranded oligonucleotides (ssOGN) may represent 

a more efficient design for a donor template to use in CD34+ cells. In the study by Hoban 

et al, the delivery of various different ssOGN designs provided high levels of gene 

modification in CD34+ cells121. 

 

5.4 Materials and Methods 

HBB CRISPR/Cas9 nuclease and nickases and βS donor constructs 
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The R01 and R02 Cas9n were prepared by cloning the 20-base guide sequences 

into a pX335-U6-SpCas9n (D10A) plasmid using the BbsI restriction site. The 20-base 

target sequence (underlined) following the 3-base PAM for the R02 construct: 5’-

GTGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAC-3’. Following the R01 target is 

the complementary sequence for the R01 CRISPR (underlined) following the 3-base 

PAM: CCNCCAACTTCATCCACGTTCAG. The nuclease target sites are in close 

proximity to the sickle cell mutation (bold) in codon 6 of the HBB gene. Synthetic mRNA 

for Cas9n, Cas9, R01, R02 sgRNA, and eGFP was purchased from Tri-Link 

BioTechnologies. The βS donor was a gift from Dr. Matthew Porteus at Stanford 

University. Cas9 purified protein was provided by Dr. Charles Gersbach at Duke 

University. Cas9 RNP complexes were formed by incubating the sgRNA and purified 

Cas9 protein for 10 minutes at room temperature. 

In vitro culture and CFC assay in CD34
+
 cells  

Cryopreserved CD34+ cells were purchased from Stem Cell Technologies. The 

erythroid differentiation media consisted of StemSpan SFEM medium supplemented with 

human cytokines: EPO 3 units mL-1, SCF 25 ng mL-1, IL-3 10 ng mL-1, and IL-6 ng mL-1; 

all purchased from R&D systems. The expansion medium consisted of StemSpan SFEM 

medium supplemented with human cytokines: SCF 100 ng mL-1, IL-3 20 ng mL-1, TPO 

100 ng mL-1, and Flt3-L 100 ng mL-1; all purchased from Peprotech. CD34+ cells shown 

in Figures 27 and 28 were nucleofected (2 x 105 cells per reaction) immediately after 

thawing. In proceeding experiments, 2.5 x 105 cells per mL were stimulated in expansion 

media for 48 hours and then nucleofected (8 x 104 cells per reaction) with specified 

amounts of plasmid DNA, mRNA, and proteins using the P3 Primary Cell 4D-

Nucleofector X kit (Lonza) and program EO-100. Cells cultured in vitro were maintained 

at a density of 1-5 x 105 cells mL-1 for cultures proceeding longer than 3 days. The 
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transfection efficiency was estimated by the percentage of GFP positive cells using an 

Accuri C6 flow cytometer (BD Biosciences, Franklin Lakes, NJ). The cell viability was 

estimated using trypan blue exclusion dye and an automated cell counter (BioRad, 

Hercules, CA). For the CFC assay, 500 cells per plate were seeded at 24 hours after 

nucleofection in H4434 MethoCult (Stem Cell Technologies), a methylcellulose-based 

medium with human recombinant cytokines to support the growth of progenitor colonies 

of the erythroid and myeloid lineages. At 14 days after plating, the total CFC units were 

enumerated according to the manufacturer’s instructions.  

In vitro culture and nucleofection into K562 cells 

K562 cells (ATCC, Manassas, VA) were grown in RPMI 1640 (Hyclone, Logan, 

UT) supplemented with 10% fetal bovine serum and 2 mM L-glutamine (Invitrogen Life 

Technologies, Grand Island, NY). K562 cells were nucleofected using SF cell line 4D-

Nucleofection kit (Lonza) according to the manufacturer’s protocol. The transfection 

efficiency was estimated by the percentage of GFP positive cells using an Accuri C6 flow 

cytometer. The cell viability was estimated using trypan blue exclusion dye and an 

automated cell counter. 

Analysis of on- and off-target indels 

Cleavage activity was quantified in pooled nucleofected K562 and CD34+ cells. 

The off-target activity for R02 CRISPR/Cas9 was measured in the GRIN3A locus 99. The 

genomic DNA was harvested using QuickExtract DNA extraction solution (Epicenter 

Biotechnologies, Madison, WI) and subjected to PCR amplification of on- and off-target 

loci using primers listed in Chapter 4 Supplementary Table 5. All PCR reactions in 50 

µL volume consisting of 1.5 µl genomic DNA were performed using AccuPrime Taq DNA 

High Fidelity Polymerase kit (Invitrogen) according to the manufacturer’s protocol. For 
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the T7E1 analysis of off-target indels, 200 ng of purified GRIN3A PCR product 

supplemented with 1X Accuprime buffer II were processed using cycles of melting and 

re-annealing (95°C for 10 min, 95-85°C at -2°C/s, 85-25°C at -0.1°C/s). T7EI (NEB, 

Ipswich, MA) was added to a final concentration of 250 units/mL and incubated at 37°C 

for 60 minutes for digestion. Reactions were resolved on a 2% agarose Tris-EDTA gel 

stained with ethidium bromide. The percentage of off-target indels was estimated by 

densitometry analysis using ImageJ software and the equation: 100 X (1-(1-fraction 

cleaved) 1/2) as described in173. For quantifying the on-target indels using TIDE 136, 

purified HBB PCR product were Sanger-sequenced using the forward and reverse 

primers separately, and subsequently analyzed using the online TIDE software 

(accessible at http://tide.nki.nl).  

Drug selection of gene modified K562 and cord blood CD34
+
 cells 

For experiments in K562 cells, cells were subjected to drug treatments on Day 4, 

7, and 10 after nucleofection (Figure 34b). K562 cells at a density of 1 x 105 cells were 

incubated for 1 hour with 50 uM O6-BG (Sigma), and followed a by second 1 hour 

incubation with 40 uM BCNU (Sigma) at 37°C. Treated cells were washed with in pre-

warmed PBS buffer two times and resuspended in fresh culture media. A similar 

procedure was used for CD34+ cells with the drug treatments completed on different 

days (Figure 36). The percentage of cells with mCitrine expression, a marker for gene 

modification, was estimated using an Accuri Flow cytometer.  

  

http://tide.nki.nl/
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CHAPTER 6: CONCLUSIONS AND FUTURE PERSPECTIVES 

 

 Precision gene editing tools are monumental scientific discoveries having the 

potential to usher a new era of curative therapeutics involving gene correction for 

hemoglobinopathies. Compared to gene therapy, gene correction through gene editing 

reagents is potentially safer and more effective because it involves the replacement of 

the aberrant HBB with the wild type or anti-sickling variant, eliminating the risks 

associated with random gene insertion using viral vectors43. The gene therapy trials for 

β-thalassemia and SCD is still in progress, but reports so far have shown correction in 

some elements of the disease phenotype, including the RBC counts and hemoglobin 

levels, obviating the need for RBC transfusion50,51. The observation of clonal expansion 

in cells due to semi-random lentiviral-induced gene disruption shows that risks for gene 

therapy cannot be overlooked. Recently HBB ZFNs and donor template was used to 

correct the SCD mutation in patient derived BM CD34+ cells, providing evidence of the 

therapeutic potential of the gene correction approach121. 

In chapter 1, we reviewed DNA binding protein and RNA-guided nucleases and 

discussed the pros and cons for each nuclease platform. The shared challenge for gene 

editing tools is designing the nuclease and donor template to achieve high levels of 

HDR-mediated gene modification and specificity, particularly within clinically relevant 

cells. Because of the difficulties of designing a nuclease that does not have any off-

target effects, it is important that the off-target sites for a specific nuclease design are 

thoroughly assessed to ensure that they will not have any adverse effects in a patient. 

The CRISPR/Cas9 system has the advantage of a simpler design, but it is associated 

with substantial off-target activities99-101. In Chapter 3, we showed that the R02 

CRISPR/Cas9 nuclease has higher activity compared to TALENs, therefore, RNA-
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guided nucleases should still be investigated as a potential tool for genome editing of the 

SCD mutation. Future studies should investigate whether CRISPR/Cas9 systems can 

induce higher frequencies of gene targeting compared to the ZFN pair used in 121. 

However, strategies will be needed to curb the off-target effects of the CRISPR/Cas9 

nuclease. 

In Chapter 3, we developed a microinjection method for K562 cells using glass 

microcapillaries and retronectin immobilization of cells on a surface. This work is 

significant because it involves adapting microinjection, traditionally used for adherent 

cells or, more frequently, oocytes, and using it to deliver gene editing tools into human 

somatic cells. For the first time, we showed that microinjection can be used to deliver 

gene editing tools and obtain high levels of gene editing (both NHEJ and HDR) in a 

human somatic cell. We showed that the advantage of microinjection is the precise 

control of the amount of the delivered gene editing tools in cells, and uniformity in 

delivery between single cells; enabling amplification of the effects from the delivered 

material in the cells. Evidence of the control provided with injection is the high 

frequencies of K562 cells observed that contained tri-allelic indels after injection with 

R02 CRISPR/Cas9 and L4-R4 TALENs without drug selection, which was considerably 

higher than the frequencies observed in ZFNs nucleofected into mammalian cell lines 

191. Future work should focus on approaches that can be used to further optimize the 

levels of gene targeting in cells microinjection with nuclease and donor template. In our 

experiments we only delivered nucleases and donor as a plasmid DNA. It will be 

interesting to investigate gene targeting by nucleases microinjected as mRNA or 

proteins as well as compare ssOGN and plasmid DNA donor, and different ratios of 

donor to nucleases. Microinjection would be ideal for these experiments since the 

delivery efficiency would be the same for any delivered substance, including all of the 

components in the injection solution, as long as the injection parameters are fixed. 
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In chapter 4, we used nucleofection to show that high levels of gene targeting is 

feasible for the R02 CRISPR/Cas9 system delivered as an mRNA and RNP complex. 

The RNP and mRNA nucleases provided higher specificity compared to the plasmid 

DNA 179. Interestingly, the RNP delivery provided even more specificity compared to 

mRNA, while the frequency of HDR-mediated gene modification was roughly the same 

for each delivery approach. It will be interesting to investigate whether gene targeting by 

the RNP delivery strategy can be enhanced by improving the complex formation 

between the Cas9 and sgRNA, further optimizing the amounts used for delivery, or by 

using better quality Cas9 proteins.  

A second challenge with therapeutic gene correction is obtaining high levels of 

nuclease expression and amount of donor template in quiescent CD34+ cells. In chapter 

5, we developed in vitro culture and nucleofection protocols and showed that they 

provided high levels of nucleofection efficiency and reasonable cell viability. Although we 

observed high levels of gene expression from both pmaxGFP plasmid DNA and eGFP 

mRNA, we only observed consistent nuclease activity in CD34+ cells nucleofected with 

R02 CRISPR/Cas9 mRNA and not plasmid DNA. This difference suggests that 

expression of active nucleases is more efficient with mRNA delivery. The delivery of the 

CRISPR/Cas9 system as RNPs provided promising results, but further work is needed to 

optimize its activity in CD34+ cells. Lastly, we explored drug selection using donor 

containing the P140K-MGMT cassette as a strategy to enrich for nuclease induced gene 

modified CD34+ cells in vitro. The P140K-MGMT drug selection marker is attractive 

since it has already been shown to be safe and is currently used in clinical trials for 

enhancing chemotherapy192. We showed that the drug selection strategy was feasible in 

K562 cells. However, an optimized procedure and donor template would be necessary to 

show proof-of-principle of the drug selection approach in human CD34+ cells. 
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APPENDIX: SUPPLEMENTARY INFORMATION 

 

Chapter 3 Supplementary Information 

  

Table 1: Sequences of primers used to amplify the endogenous genes for T7E1 mutation detection 
assays 

Gene Sequence 

HBB-F AGGCACCGAGCACTTTCTTGCC 

HBB-R ACCCTGTGGAGCCACACCCTA 

HBD-F GAGGTTGTCCAGGTGAGCCAGGCCATCAC 

HBD-R CTGCTGAAAGAGATGCGGTGGGGAGATATGTA 

GRIN3A-F GTTTCTAAGAGCGGTGGCTCTCA 

GRIN3A-R CTGCCCCATCTATGCTTGGGA 

 

Table 2: Sequences of primers used for PCR confirmation of HR-mediated GFP integration in the 
HBB locus 

Gene Sequence 

GFP Integration-F CGACAACCACTACCTGAGCA 

GFP Integration-R AGCAGAATGGTAGCTGGATTG 

HBB Control-F TGGTGGTGAGGCCCTGGGCAGGTTG 

HBB Control-R TAAAAGCAGAATGGTAGCTGGATT 
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Table 3: Sequences of primers used for amplifying HBB locus in single cell clones for T7E1 assay 
and Sanger sequencing.  

Primer Sequence 

Beta 4F-Tag1 atcgAGGCACCGAGCACTTTCTTGCC 

Beta 4F-Tag2 cagaAGGCACCGAGCACTTTCTTGCC 

Beta 4F-Tag3 gctaAGGCACCGAGCACTTTCTTGCC 

Beta 4F-Tag4 tgacAGGCACCGAGCACTTTCTTGCC 

Beta 4F-Tag5 acgtAGGCACCGAGCACTTTCTTGCC 

Beta 4F-Tag6 catgAGGCACCGAGCACTTTCTTGCC 

Beta 4F-Tag7 gtgaAGGCACCGAGCACTTTCTTGCC 

Beta 4F-Tag8 tagcAGGCACCGAGCACTTTCTTGCC 

Beta 4F-Tag9 agtcAGGCACCGAGCACTTTCTTGCC 

Beta 4R-Tag1 atcgACCCTGTGGAGCCACACCCTA 

Beta 4R-Tag2 cagaACCCTGTGGAGCCACACCCTA 

Beta 4R-Tag3 gctaACCCTGTGGAGCCACACCCTA 

Beta 4R-Tag4 tgacACCCTGTGGAGCCACACCCTA 

Beta 4R-Tag5 acgtACCCTGTGGAGCCACACCCTA 

Beta 4R-Tag6 catgACCCTGTGGAGCCACACCCTA 

Beta 4R-Tag7 gtgaACCCTGTGGAGCCACACCCTA 

Beta 4R-Tag8 tagcACCCTGTGGAGCCACACCCTA 

Beta 4R-Tag9 agtcACCCTGTGGAGCCACACCCTA 

Unique barcode used to identify each clone is shown in lowercase. 
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Table 4: Analysis of clones with on- and off-target activity 

 
R02 L4-R4 

Total Clones analyzed by T7E1 78 53 
% Clones with on- and off-target activity 32.1 13.2 
% Clones with on-target activity only 14.1 15.1 
% Clones with off-target activity only 6.4 11.3 
 

Clones derived from single cells injected with R02 CRISPR/Cas9 or L4-R4 TALENs were analyzed for on- 

and off-target activity using the T7E1 mismatch assay. The percentage of clones having on-target indels 

with and without off-target indels, or off-target indels only is shown in the table for each nuclease. 
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Chapter 4 Supplementary Information 

Table 5: Sequences of primers used to amplify the endogenous genes for T7E1 and TIDE mutation 
detection assays 

Gene Sequence 

HBB-F AGGCACCGAGCACTTTCTTGCC 

HBB-R ACCCTGTGGAGCCACACCCTA 

GRIN3A-F GTTTCTAAGAGCGGTGGCTCTCA 

GRIN3A-R CTGCCCCATCTATGCTTGGGA 

 

 

Table 6: Sequences of primers used to amplify the targeted HBB gene for the RFLP assay 

Gene Sequence 

RFLP-R GCAATCATTCGTCTGTTTCCCATTC 

RFLP-F CTGGAGACGCAGGAAGAGATCC 
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HBB EcoRI Donor Sequence 

The HBB donor sequence consisting of 1049 bp is shown in uppercase with the EcoRI 

site highlighted and underlined in Red. The mismatches in the EcoR1 site reduces 

binding and cleavage by the R02 CRISPR. The remainder of the sequence is the puc18 

plasmid DNA. 

AGTGCATCAACTTCTTATTTGTGTAATAAGAAAATTGGGAAAACGATCTTCAATATGC

TTACCAAGCTGTGATTCCAAATATTACGTAAATACACTTGCAAAGGAGGATGTTTTTA

GTAGCAATTTGTACTGATGGTATGGGGCCAAGAGATATATCTTAGAGGGAGGGCTG

AGGGTTTGAAGTCCAACTCCTAAGCCAGTGCCAGAAGAGCCAAGGACAGGTACGG

CTGTCATCACTTAGACCTCACCCTGTGGAGCCACACCCTAGGGTTGGCCAATCTAC

TCCCAGGAGCAGGGAGGGCAGGAGCCAGGGCTGGGCATAAAAGTCAGGGCAGAG

CCATCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACA

GACACCATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTGGAATTCGGG

GCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAG

GTTACAAGACAGGTTTAAGGAGACCAATAGAAACTGGGCATGTGGAGACAGAGAAG

ACTCTTGGGTTTCTGATAGGCACTGACTCTCTCTGCCTATTGGTCTATTTTCCCACC

CTTAGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGA

TCTGTCCACTCCTGATGCTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGA

AAGTGCTCGGTGCCTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGGCAC

CTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGATCCTGAGAACT

TCAGGGTGAGTCTATGGGACGCTTGATGTTTTCTTTCCCCTTCTTTTCTATGGTTAA

GTTCATGTCATAGGAAGGGGATAAGTAACAGGGTACAGTTTAGAATGGGAAACAGA

CGAATGATTGCATCAGTGTGGAAGTCTCAGGATCGTTTTAGTTTCTTTTATTTGCTG

TTCATAACAATTGTTTTCTTTTGTTTAATTCTTGCTTTCgtaatcatggtcatagctgtttcctgtgtga

aattgttatccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagc

taactcacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaa
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cgcgcggggagaggcggtttgcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcg

gcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtg

agcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgac

gagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccct

ggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcg

ctttctcaaagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttc

agcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcag

ccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctaca

ctagaagaacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaa

caaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctt

tgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatctt

cacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgct

taatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgata

cgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaat

aaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccg

ggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtc

gtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttag

ctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctctta

ctgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccga

gttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttct

tcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagc

atcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgaca

cggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttga

atgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgtc 
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